ABSTRACT
BACKGROUND: Stingless bee honey (SBH) is a natural remedy and therapeutic agent traditionally used by local communities across the (sub-)tropics. Forest SBH represents a prime non-timber forest product (NTFP) with a potential to revitalize indigenous foodways and to generate income in rural areas, yet it is also used in a variety of non-food contexts that are poorly documented in sub-Saharan Africa and that collectively represent a significant part of the local traditional ecological knowledge (TEK) passed on across generations. Documenting TEK of local communities in African tropical forests facing global change is a pressing issue to recognize the value of their insights, to evaluate their sustainability, to determine how they contribute to enhancing conservation efforts, and how TEK generally contributes to the well-being of both the natural environment and the communities that rely on it. This is particularly important to achieve in Kenya's only tropical rainforest at Kakamega where SBH production and non-food uses have evolved and diversified to a remarkable extent. METHODS: We used ethnographic techniques and methods, including semi-structured questionnaires and recorded interviews. We used snowball sampling, a non-probability sampling method where new interviewees were recruited by other respondents, to collectively form a sample consisting of 36 interviewees (including only one woman). RESULTS: Our results indicate that local communities in Kakamega were able to discriminate between six different and scientifically recognized stingless bee species, and they provided detailed accounts on the species-specific non-food uses of these SBH. Collectively, we recorded an array of 26 different non-food uses that are all passed on orally across generations in the Kakamega community. CONCLUSION: Our results uncover the vast and hitherto unexpected diversity of TEK associated with SBH and pave the way for a systematic survey of SBH and their non-food uses across a network of communities in different environments and with different cultural backgrounds in the Afrotropics. This, along with parallel and more in-depth investigations into honey chemistry, will help develop a comprehensive understanding of SBH, offering insights into holistic ecosystem management, resilience and adaptation while in the mid- to long-term promoting cross-cultural exchanges and pathways for the revitalization of cultural practices and traditions.
Subject(s)
Honey , Female , Bees , Humans , Animals , Ecosystem , Rainforest , Kenya , ForestsABSTRACT
Research on stingless bee products has increased in recent years, and of particular interest is propolis because of its biological activities such as antioxidant and antimicrobial. However, there is paucity of information regarding intra-hive variations in the biochemical composition and biofunctional properties of this propolis. In this study, we investigated the phytochemicals and radical scavenging activity (RSA) of Meliponula ferruginea propolis from 10 wooden hives (n = 49). The samples were collected from five different locations comprising the entrance, involucrum, pillars, pots and sealant. Principal component analysis showed that there is an intra-hive variation in phytochemical content and RSA. Phenolic content constituted the highest phytochemical content in all the locations. The sealant and entrance had the highest amounts of phytochemicals compared to the involucrum, pillars and pots. Further analysis of propolis extracts by gas chromatography-mass spectrometry revealed occurrence of different compounds such as monoterpenoids, hydrocarbons, triterpenoids and alkaloids. Hydrocarbons were common in all parts while monoterpenes and triterpenes were present in the entrance. The findings of our study indicates that there is an intra-hive variation in propolis of M. ferruginea and hence this information will provide further insight into better understanding of stingless bee propolis.
ABSTRACT
Honey collection evolved from simple honey hunting to the parallel and independent domestication of different species of bees in various parts of the world. In this study, we investigate the extent to which the composition of Apis and stingless bee honeys has been a driver in the selection of different bee species for domestication in Mesoamerica (Mexico) and Asia (Thailand) using a sampling design that combines peak honey profiling by H1 NMR spectroscopy with the collection of honeys from domesticated and undomesticated bee species. Our results show that, independently of the region of the world considered, domesticated stingless bees produce honey whose compositional profiles differ from those of the non-domesticated species and exhibit more similarities towards honeys produced by the domesticated Apis species. Our results provide evidence for the first time that the search for natural sweeteners in the environment by our ancestors led to the parallel and independent domestication of social bees producing honeys with similar compositional profiles.