Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(4): e1012133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662794

ABSTRACT

The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.


Subject(s)
Extracellular Vesicles , Picornaviridae , Viral Proteins , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Humans , Picornaviridae/metabolism , Picornaviridae/physiology , Viral Proteins/metabolism , Viral Proteins/genetics , Animals , eIF-2 Kinase/metabolism , Virus Release/physiology , Mice , Theilovirus/metabolism , Cardiovirus Infections/virology , Cardiovirus Infections/metabolism , Encephalomyocarditis virus/metabolism , Encephalomyocarditis virus/physiology
2.
Trends Biochem Sci ; 46(2): 124-137, 2021 02.
Article in English | MEDLINE | ID: mdl-33020011

ABSTRACT

Integrins are transmembrane receptors that transduce biochemical and mechanical signals across the plasma membrane and promote cell adhesion and migration. In addition, integrin adhesion complexes are functionally and structurally linked to components of the intracellular trafficking machinery and accumulating data now reveal that they are key regulators of endocytosis and exocytosis in a variety of cell types. Here, we highlight recent insights into integrin control of intracellular trafficking in processes such as degranulation, mechanotransduction, cell-cell communication, antibody production, virus entry, Toll-like receptor signaling, autophagy, and phagocytosis, as well as the release and uptake of extracellular vesicles. We discuss the underlying molecular mechanisms and the implications for a range of pathophysiological contexts, including hemostasis, immunity, tissue repair, cancer, and viral infection.


Subject(s)
Integrins , Mechanotransduction, Cellular , Cell Adhesion , Cell Membrane , Endocytosis
3.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Article in English | MEDLINE | ID: mdl-34446922

ABSTRACT

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Subject(s)
Extracellular Vesicles , Microscopy/methods , Animals , Coloring Agents/chemistry , Epitopes , Extracellular Vesicles/chemistry , Extracellular Vesicles/pathology , Extracellular Vesicles/physiology , Fluorescent Dyes/chemistry , Humans
4.
PLoS Pathog ; 15(2): e1007594, 2019 02.
Article in English | MEDLINE | ID: mdl-30779790

ABSTRACT

Several naked virus species, including members of the Picornaviridae family, have recently been described to escape their host cells and spread infection via enclosure in extracellular vesicles (EV). EV are 50-300 nm sized lipid membrane-enclosed particles produced by all cells that are broadly recognized for playing regulatory roles in numerous (patho)physiological processes, including viral infection. Both pro- and antiviral functions have been ascribed to EV released by virus-infected cells. It is currently not known whether this reported functional diversity is a result of the release of multiple virus-containing and non-virus containing EV subpopulations that differ in composition and function. Using encephalomyocarditis virus infection (EMCV, Picornaviridae family), we here provide evidence that EV populations released by infected cells are highly heterogeneous. Virus was contained in two distinct EV populations that differed in physical characteristics, such as sedimentation properties, and in enrichment for proteins indicative of different EV biogenesis pathways, such as the plasma membrane resident proteins Flotillin-1 and CD9, and the autophagy regulatory protein LC3. Additional levels of EV heterogeneity were identified using high-resolution flow cytometric analysis of single EV. Importantly, we demonstrate that EV subsets released during EMCV infection varied largely in potency of transferring virus infection and in their kinetics of release from infected cells. These data support the notion that heterogeneous EV populations released by virus-infected cells can exert diverse functions at distinct time points during infection. Unraveling the compositional, temporal and functional heterogeneity of these EV populations using single EV analysis technologies, as employed in this study, is vital to understanding the role of EV in virus dissemination and antiviral host responses.


Subject(s)
Encephalomyocarditis virus/metabolism , Extracellular Vesicles/physiology , Extracellular Vesicles/virology , Autophagy , Extracellular Vesicles/metabolism , HeLa Cells , Humans , Picornaviridae/metabolism , Picornaviridae/pathogenicity , Picornaviridae Infections/metabolism
5.
Vet Pathol ; 58(3): 453-471, 2021 05.
Article in English | MEDLINE | ID: mdl-33813952

ABSTRACT

With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.


Subject(s)
Extracellular Vesicles , Neoplasms , Animals , Biomarkers , Neoplasms/diagnosis , Neoplasms/veterinary
6.
Eur J Immunol ; 48(10): 1621-1631, 2018 10.
Article in English | MEDLINE | ID: mdl-30011060

ABSTRACT

CD4 T cells play a central role as helper cells in adaptive immunity. Presentation of exogenous antigens in MHC class II by professional antigen-presenting cells is a crucial step in induction of specific CD4 T cells in adaptive immune responses. For efficient induction of immunity against intracellular threats such as viruses or malignant transformations, antigens from HLA class II-negative infected or transformed cells need to be transferred to surrounding antigen-presenting cells to allow efficient priming of naive CD4 T cells. Here we show indirect antigen presentation for a subset of natural HLA class II ligands that are created by genetic variants and demonstrated that (neo)antigens can be transferred between cells by extracellular vesicles. Intercellular transfer by extracellular vesicles was not dependent on the T-cell epitope, but rather on characteristics of the full-length protein. This mechanism of (neo)antigen transfer from HLA class II-negative cells to surrounding antigen-presenting cells may play a crucial role in induction of anti-tumor immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Extracellular Vesicles/metabolism , Genetic Variation , Histocompatibility Antigens Class II/genetics , Neoplasms/immunology , Antigen Presentation , Antigen-Presenting Cells/immunology , Extracellular Vesicles/immunology , Focal Adhesion Kinase 2/genetics , Focal Adhesion Kinase 2/immunology , HeLa Cells , Humans , Ligands , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/immunology , T-Lymphocytes, Helper-Inducer/immunology
7.
Cell Mol Life Sci ; 75(20): 3857-3875, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29808415

ABSTRACT

The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs.


Subject(s)
Dendritic Cells/metabolism , Extracellular Vesicles/genetics , Transcriptome , Animals , Bone Marrow Cells/cytology , Cells, Cultured , Cholecalciferol/pharmacology , Dendritic Cells/cytology , Dendritic Cells/drug effects , Extracellular Vesicles/metabolism , Fluorescent Dyes/chemistry , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Microscopy, Electron , Nanoparticles/chemistry , RNA, Small Nucleolar/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/isolation & purification , RNA, Small Untranslated/metabolism , RNA, Transfer/metabolism , Sequence Analysis, RNA
8.
Proc Natl Acad Sci U S A ; 113(33): 9155-61, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27432966

ABSTRACT

Extracellular vesicles (EVs) released by various cells are small phospholipid membrane-enclosed entities that can carry miRNA. They are now central to research in many fields of biology because they seem to constitute a new system of cell-cell communication. Physical and chemical characteristics of many EVs, as well as their biogenesis pathways, resemble those of retroviruses. Moreover, EVs generated by virus-infected cells can incorporate viral proteins and fragments of viral RNA, being thus indistinguishable from defective (noninfectious) retroviruses. EVs, depending on the proteins and genetic material incorporated in them, play a significant role in viral infection, both facilitating and suppressing it. Deciphering the mechanisms of EV-cell interactions may facilitate the design of EVs that inhibit viral infection and can be used as vehicles for targeted drug delivery.


Subject(s)
Extracellular Vesicles/physiology , Virus Diseases/etiology , APOBEC-3G Deaminase/physiology , Animals , Exosomes/physiology , Humans , MicroRNAs/physiology , Virion/physiology , Virus Diseases/therapy
9.
J Immunol ; 197(8): 3382-3392, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27619994

ABSTRACT

Mast cells (MC) are well known for their effector role in allergic disorders; moreover, they are associated with diverse modulatory effects in innate and adaptive immunity. It is largely unclear how MC exert these modulating functions. In this article, we show that IgE-mediated MC degranulation leads to a rapid release of high quantities of extracellular vesicles (EV), comparable to the release of preformed mediators. EV are submicron structures composed of lipid bilayers, proteins, and nucleic acids that are released by cells in a regulated fashion and are involved in intercellular communication. Primary murine mucosal-type MC and connective tissue-type MC released phenotypically different EV populations depending on the stimulus they received. Although unstimulated MC constitutively released CD9+ EV, degranulation was accompanied by the release of CD63+ EV, which correlated with release of the soluble mediator ß-hexosaminidase. This CD63+ EV subset was smaller and exhibited a higher buoyant density and distinct phospholipid composition compared with CD9+ EV. Marked differences were observed for phosphatidylinositol, phosphatidic acid, and bis(monoacylglycero)phosphate species. Strikingly, proteomic analysis of CD63+ EV from connective tissue-type MC unveiled an abundance of MC-specific proteases. With regard to carboxypeptidase A3, it was confirmed that the enzyme was EV associated and biologically active. Our data demonstrate that, depending on their activation status, MC release distinct EV subsets that differ in composition and protease activity and are indicative of differential immunological functions. Concerning the strategic tissue distribution of MC and the presence of degranulated MC in various (allergic) disorders, MC-derived EV should be considered potentially important immune regulators.


Subject(s)
Cell Degranulation , Extracellular Vesicles/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Peptide Hydrolases/metabolism , Animals , Cell Degranulation/immunology , Cells, Cultured , Extracellular Vesicles/immunology , Mice , Mice, Inbred C57BL , Peptide Hydrolases/immunology
10.
Mol Cell Proteomics ; 15(11): 3412-3423, 2016 11.
Article in English | MEDLINE | ID: mdl-27601599

ABSTRACT

Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome.


Subject(s)
Extracellular Vesicles/metabolism , Milk, Human/cytology , Proteome/metabolism , Proteomics/methods , Adult , Chromatography, Liquid , Female , Humans , Milk Proteins/metabolism , Milk, Human/metabolism , Tandem Mass Spectrometry
11.
Bioinformatics ; 31(6): 933-9, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25388151

ABSTRACT

MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION: The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


Subject(s)
Computational Biology , Database Management Systems , Databases, Factual , Exosomes/metabolism , Extracellular Space/metabolism , Software , Biomedical Research , Humans , User-Computer Interface
12.
Cytometry A ; 89(2): 135-47, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25688721

ABSTRACT

Submicron-sized vesicles released by cells are increasingly recognized for their role in intercellular communication and as biomarkers of disease. Methods for high-throughput, multi-parameter analysis of such extracellular vesicles (EVs) are crucial to further investigate their diversity and function. We recently developed a high-resolution flow cytometry-based method (using a modified BD Influx) for quantitative and qualitative analysis of EVs. The fact that the majority of EVs is <200 nm in size requires special attention with relation to specific conditions of the flow cytometer, as well as sample concentration and event rate. In this study, we investigated how (too) high particle concentrations affect high-resolution flow cytometry-based particle quantification and characterization. Increasing concentrations of submicron-sized particles (beads, liposomes, and EVs) were measured to identify coincidence and swarm effects, caused by the concurrent presence of multiple particles in the measuring spot. As a result, we demonstrate that analysis of highly concentrated samples resulted in an underestimation of the number of particles and an interdependent overestimation of light scattering and fluorescence signals. On the basis of this knowledge, and by varying nozzle size and sheath pressure, we developed a strategy for high-resolution flow cytometric sorting of submicron-sized particles. Using the adapted sort settings, subsets of EVs differentially labeled with two fluorescent antibodies could be sorted to high purity. Moreover, sufficient numbers of EVs could be sorted for subsequent analysis by western blotting. In conclusion, swarm effects that occur when measuring high particle concentrations severely hamper EV quantification and characterization. These effects can be easily overlooked without including proper controls (e.g., sample dilution series) or tools (e.g., oscilloscope). Providing that the event rate is well controlled, the sorting strategy we propose here indicates that high-resolution flow cytometric sorting of different EV subsets is feasible.


Subject(s)
Extracellular Vesicles/physiology , Flow Cytometry/methods , Animals , Cells, Cultured , Mast Cells/physiology , Mice, Inbred C57BL
13.
PLoS Biol ; 10(12): e1001450, 2012.
Article in English | MEDLINE | ID: mdl-23271954

ABSTRACT

Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.


Subject(s)
Databases as Topic , Exosomes/metabolism , Extracellular Space/metabolism , Research , Apoptosis
14.
Biochim Biophys Acta ; 1834(11): 2326-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-22940639

ABSTRACT

Seminal plasma contains various types of extracellular vesicles, including 'prostasomes'. Prostasomes are small vesicles secreted by prostatic epithelial cells that can be recruited by and fuse with sperm cells in response of progesterone that is released by oocyte surrounding cumulus cells. This delivers Ca(2+) signaling tools that allow the sperm cell to gain hypermotility and undergo the acrosome reaction. Conditions for binding of prostasomes to sperm cells are however unclear. We found that classically used prostasome markers are in fact heterogeneously expressed on distinct populations of small and large vesicles in seminal plasma. To study interactions between prostasomes and spermatozoa we used the stallion as a model organism. A homogeneous population of ~60nm prostasomes was first separated from larger vesicles and labeled with biotin. Binding of biotinylated prostasomes to individual live spermatozoa was then monitored by flow cytometry. Contrary to assumptions in the literature, we found that such highly purified prostasomes bound to live sperm only after capacitation had been initiated, and specifically at pH ≥7.5. Using fluorescence microscopy, we observed that prostasomes bound primarily to the head of live sperm. We propose that in vivo, prostasomes may bind to sperm cells in the uterus, to be carried in association with sperm cells into oviduct and to fuse with the sperm cell only during the final approach of the oocyte. This article is part of a Special Issue entitled: An Updated Secretome.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Sperm Capacitation , Spermatozoa/physiology , Animals , Horses , Male , Proteasome Endopeptidase Complex/isolation & purification , Protein Binding , Spermatozoa/cytology
15.
Nucleic Acids Res ; 40(18): 9272-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22821563

ABSTRACT

Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used array analysis to establish the presence of microRNAs and mRNA in cell-derived vesicles from many sources. Here, we used an unbiased approach by deep sequencing of small RNA released by immune cells. We found a large variety of small non-coding RNA species representing pervasive transcripts or RNA cleavage products overlapping with protein coding regions, repeat sequences or structural RNAs. Many of these RNAs were enriched relative to cellular RNA, indicating that cells destine specific RNAs for extracellular release. Among the most abundant small RNAs in shuttle RNA were sequences derived from vault RNA, Y-RNA and specific tRNAs. Many of the highly abundant small non-coding transcripts in shuttle RNA are evolutionary well-conserved and have previously been associated to gene regulatory functions. These findings allude to a wider range of biological effects that could be mediated by shuttle RNA than previously expected. Moreover, the data present leads for unraveling how cells modify the function of other cells via transfer of specific non-coding RNA species.


Subject(s)
RNA, Small Untranslated/analysis , Transport Vesicles/chemistry , Cells, Cultured , Coculture Techniques , Dendritic Cells/chemistry , Dendritic Cells/immunology , High-Throughput Nucleotide Sequencing , MicroRNAs/analysis , MicroRNAs/chemistry , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/physiology , RNA, Transfer/analysis , RNA, Transfer/chemistry , Repetitive Sequences, Nucleic Acid , Sequence Analysis, RNA , T-Lymphocytes/chemistry , T-Lymphocytes/immunology
16.
J Extracell Biol ; 3(1): e123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938676

ABSTRACT

Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.

17.
J Vis Exp ; (205)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38526125

ABSTRACT

Single-use laboratory plastics exacerbate the pollution crisis and contribute to consumable costs. In extracellular vesicle (EV) isolation, polycarbonate ultracentrifuge (UC) tubes are used to endure the associated high centrifugal forces. EV proteomics is an advancing field and validated re-use protocols for these tubes are lacking. Re-using consumables for low-yield protein isolation protocols and downstream proteomics requires reagent compatibility with mass spectroscopy acquisitions, such as the absence of centrifuge tube-derived synthetic polymer contamination, and sufficient removal of residual proteins. This protocol describes and validates a method for cleaning polycarbonate UC tubes for re-use in EV proteomics experiments. The cleaning process involves immediate submersion of UC tubes in H2O to prevent protein drying, washing in 0.1% sodium dodecyl sulfate (SDS) detergent, rinsing in hot tap water, demineralized water, and 70% ethanol. To validate the UC tube re-use protocol for downstream EV proteomics, used tubes were obtained following an experiment isolating EVs from cardiovascular tissue using differential UC and density gradient separation. Tubes were cleaned and the experimental process was repeated without EV samples comparing blank never-used UC tubes to cleaned UC tubes. The pseudo-EV pellets obtained from the isolation procedures were lysed and prepared for liquid chromatography-tandem mass spectrometry using a commercial protein sample preparation kit with modifications for low-abundance protein samples. Following cleaning, the number of identified proteins was reduced by 98% in the pseudo-pellet versus the previous EV isolation sample from the same tube. Comparing a cleaned tube against a blank tube, both samples contained a very small number of proteins (≤20) with 86% similarity. The absence of polymer peaks in the chromatograms of the cleaned tubes was confirmed. Ultimately, the validation of a UC tube cleaning protocol suitable for the enrichment of EVs will reduce the waste produced by EV laboratories and lower the experimental costs.


Subject(s)
Extracellular Vesicles , Polycarboxylate Cement , Proteomics , Proteomics/methods , Extracellular Vesicles/metabolism , Proteins/metabolism , Polymers/analysis , Water/metabolism
18.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891077

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.


Subject(s)
Bronchoalveolar Lavage Fluid , Extracellular Vesicles , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Male , Female , Middle Aged , Aged , Case-Control Studies , Proteomics/methods
19.
J Extracell Vesicles ; 13(6): e12463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868945

ABSTRACT

Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.


Subject(s)
Biomarkers , Extracellular Vesicles , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Biomarkers/metabolism , Flow Cytometry/methods , Membrane Proteins/metabolism , Membrane Proteins/analysis , Cells, Cultured , Antigens, CD/metabolism
20.
Biochim Biophys Acta ; 1818(9): 2175-83, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22560898

ABSTRACT

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis related proteins group 1 (PR-1). GAPR-1 is a peripheral membrane-binding protein that strongly associates with lipid-enriched microdomains at the cytosolic leaflet of Golgi membranes. Little is known about the mechanism of GAPR-1 interaction with membranes. We previously suggested that dimerization plays a role in the function of GAPR-1 and here we report that phytic acid (inositol hexakisphosphate) induces dimerization of GAPR-1 in solution. Elucidation of the crystal structure of GAPR-1 in the presence of phytic acid revealed that the GAPR-1 dimer differs from the previously published GAPR-1 dimer structure. In this structure, one of the monomeric subunits of the crystallographic dimer is rotated by 28.5°. To study the GAPR-1 dimerization properties, we investigated the interaction with liposomes in a light scattering assay and by flow cytometry. In the presence of negatively charged lipids, GAPR-1 caused a rapid and stable tethering of liposomes. [D81K]GAPR-1, a mutant predicted to stabilize the IP6-induced dimer conformation, also caused tethering of liposomes. [A68K]GAPR-1 however, a mutant predicted to stabilize the non-rotated dimer conformation, is capable of binding to liposomes but did not cause liposome tethering. Our combined data suggest that the charge properties of the lipid bilayer can regulate GAPR-1 dynamics as a potential mechanism to modulate GAPR-1 function.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Cell Membrane/metabolism , Chromatography, Gel , Crystallography, X-Ray/methods , Dimerization , Flow Cytometry/methods , Golgi Apparatus/metabolism , Humans , Lipids/chemistry , Liposomes/chemistry , Liposomes/metabolism , Models, Biological , Models, Molecular , Molecular Conformation , Mutation , Phosphatidylinositols/chemistry , Phytic Acid/chemistry , Plasmids/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL