Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 631(8022): 819-825, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843826

ABSTRACT

Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.


Subject(s)
Animal Husbandry , Domestication , Horses , Transportation , Animals , Female , Male , Animal Husbandry/history , Asia , Europe , Genome/genetics , History, Ancient , Horses/classification , Horses/genetics , Reproduction , Transportation/history , Transportation/methods , Phylogeny
2.
Food Technol Biotechnol ; 62(1): 89-101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38601968

ABSTRACT

Research background: An innovative integrated bioprocess system for bioethanol production from raw sugar beet cossettes (SBC) and arabitol from remaining exhausted sugar beet cossettes (ESBC) was studied. This integrated three-stage bioprocess system is an example of the biorefinery concept to maximise the use of raw SBC for the production of high value-added products such as sugar alcohols and bioethanol. Experimental approach: The first stage of the integrated bioprocess system was simultaneous sugar extraction from SBC and its alcoholic fermentation to produce bioethanol in an integrated bioreactor system (vertical column bioreactor and stirred tank bioreactor) containing a high-density suspension of yeast Saccharomyces cerevisiae (30 g/L). The second stage was the pretreatment of ESBC with dilute sulfuric acid to release fermentable sugars. The resulting liquid hydrolysate of ESBC was used in the third stage as a nutrient medium for arabitol production by non-Saccharomyces yeasts (Spathaspora passalidarum CBS 10155 and Spathaspora arborariae CBS 11463). Results and conclusions: The obtained results show that the efficiency of bioethanol production increased with increasing temperature and prolonged residence time in the integrated bioreactor system. The maximum bioethanol production efficiency (87.22 %) was observed at a time of 60 min and a temperature of 36 °C. Further increase in residence time (above 60 min) did not result in the significant increase of bioethanol production efficiency. Weak acid hydrolysis was used for ESBC pretreatment and the highest sugar yield was reached at 200 °C and residence time of 1 min. The inhibitors of the weak acid pretreatment were produced below bioprocess inhibition threshold. The use of the obtained liqiud phase of ESBC hydrolysate for the production of arabitol in the stirred tank bioreactor under constant aeration clearly showed that S. passalidarum CBS 10155 with 8.48 g/L of arabitol (YP/S=0.603 g/g and bioprocess productivity of 0.176 g/(L.h)) is a better arabitol producer than Spathaspora arborariae CBS 10155. Novelty and scientific contribution: An innovative integrated bioprocess system for the production of bioethanol and arabitol was developed based on the biorefinery concept. This three-stage bioprocess system shows great potential for maximum use of SBC as a feedstock for bioethanol and arabitol production and it could be an example of a sustainable 'zero waste' production system.

4.
Genes (Basel) ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927684

ABSTRACT

Due to its turbulent demographic history, marked by extensive settlement and gene flow from diverse regions of Eurasia, Southeastern Europe (SEE) has consistently served as a genetic crossroads between East and West and a junction for the migrations that reshaped Europe's population. SEE, including modern Croatian territory, was a crucial passage from the Near East and even more distant regions and human populations in this region, as almost any other European population represents a remarkable genetic mixture. Modern humans have continuously occupied this region since the Upper Paleolithic era, and different (pre)historical events have left a distinctive genetic signature on the historical narrative of this region. Our views of its history have been mostly renewed in the last few decades by extraordinary data obtained from Y-chromosome studies. In recent times, the international research community, bringing together geneticists and archaeologists, has steadily released a growing number of ancient genomes from this region, shedding more light on its complex past population dynamics and shaping the genetic pool in Croatia and this part of Europe.


Subject(s)
Chromosomes, Human, Y , Genetics, Population , Humans , Chromosomes, Human, Y/genetics , Croatia , Genetics, Population/methods , Gene Pool , DNA, Ancient/analysis , Gene Flow , Human Migration , Male
SELECTION OF CITATIONS
SEARCH DETAIL