ABSTRACT
Intermittent preventive treatment in pregnancy with sulfadoxine and pyrimethamine (IPTp-SP) is a key component in the malaria control strategy implemented in Africa. The aim of this study was to determine IPTp-SP adherence and coverage, and the impact on maternal infection and birth outcomes in the context of widespread SP resistance in the city of Douala, Cameroon. Clinical and demographic information were documented among 888 pregnant women attending 3 health facilities, from the antenatal care visit to delivery. Positive samples were genotyped for P. falciparum gene (dhfr, dhps, and k13) mutations. The overall IPTp-SP coverage (≥three doses) was 17.5%, and 5.1% received no dose. P. falciparum prevalence was 16%, with a predominance of submicroscopic infections (89.3%). Malaria infection was significantly associated with locality and history of malaria, and it was reduced among women using indoor residual spraying. Optimal doses of IPTp-SP were significantly associated with reduced infection among newborns and women (secundiparous and multiparous), but there was no impact of IPTp-SP on the newborn bodyweight. Pfdhfr-Pfdhps quintuple mutants were over-represented (IRNI-FGKAA, IRNI-AGKAA), and sextuple mutants (IRNI-AGKAS, IRNI-FGEAA, IRNI-AGKGS) were also reported. The Pfk13 gene mutations associated with artemisinin resistance were not detected. This study highlights the role of ANC in achieving optimal SP coverage in pregnant women, the mitigated impact of IPTp-SP on malaria outcomes, and the high prevalence of multiple SP-resistant P. falciparum parasites in the city of Douala that could compromise the efficacy of IPTp-SP.
ABSTRACT
Malaria remains a major public health problem worldwide, with eradication efforts thwarted by drug and insecticide resistance and the lack of a broadly effective malaria vaccine. In continuously exposed communities, polyclonal infections are thought to reduce the risk of severe disease and promote the establishment of asymptomatic infections. We sought to investigate the relationship between the complexity of P. falciparum infection and underlying host adaptive immune responses in an area with a high prevalence of asymptomatic parasitaemia in Cameroon. A cross-sectional study of 353 individuals aged 2 to 86 years (median age = 16 years) was conducted in five villages in the Centre Region of Cameroon. Plasmodium falciparum infection was detected by multiplex nested PCR in 316 samples, of which 278 were successfully genotyped. Of these, 60.1% (167/278) were polyclonal infections, the majority (80.2%) of which were from asymptomatic carriers. Host-parasite factors associated with polyclonal infection in the study population included peripheral blood parasite density, participant age and village of residence. The number of parasite clones per infected sample increased significantly with parasite density (r = 0.3912, p < 0.0001) but decreased with participant age (r = -0.4860, p < 0.0001). Parasitaemia and the number of clones per sample correlated negatively with total plasma levels of IgG antibodies to three highly reactive P. falciparum antigens (MSP-1p19, MSP-3 and EBA175) and two soluble antigen extracts (merozoite and mixed stage antigens). Surprisingly, we observed no association between the frequency of polyclonal infection and susceptibility to clinical disease as assessed by the recent occurrence of malarial symptoms or duration since the previous fever episode. Overall, the data indicate that in areas with the high perennial transmission of P. falciparum, parasite polyclonality is dependent on underlying host antibody responses, with the majority of polyclonal infections occurring in persons with low levels of protective anti-plasmodial antibodies.
ABSTRACT
BACKGROUND: Malaria remains a serious public health problem in Cameroon. Implementation of control interventions requires prior knowledge of the local epidemiological situation. Here we report the results of epidemiological and entomological surveys carried out in Tibati, Adamawa Region, Cameroon, an area where malaria transmission is seasonal, 6 years after the introduction of long-lasting insecticidal bed nets. METHODS: Cross-sectional studies were carried out in July 2015 and 2017 in Tibati. Thick blood smears and dried blood spots were collected from asymptomatic and symptomatic individuals in the community and at health centers, respectively, and used for the molecular diagnosis of Plasmodium species. Adult mosquitoes were collected by indoor residual spraying and identified morphologically and molecularly. The infection status of Plasmodium spp. was determined by quantitative PCR, and positivity of PCR-positive samples was confirmed by Sanger sequencing. RESULTS: Overall malaria prevalence in our study population was 55.0% (752/1367) and Plasmodium falciparum was the most prevalent parasite species (94.3%), followed by P. malariae (17.7%) and P. ovale (0.8%); 92 (12.7%) infections were mixed infections. Infection parameters varied according to clinical status (symptomatic/asymptomatic) and age of the sampled population and the collection sites. Infection prevalence was higher in asymptomatic carriers (60.8%), but asexual and sexual parasite densities were lower. Prevalence and intensity of infection decreased with age in both the symptomatic and asymptomatic groups. Heterogeneity in infections was observed at the neighborhood level, revealing hotspots of transmission. Among the 592 Anopheles mosquitoes collected, 212 (35.8%) were An. gambiae, 172 (29.1%) were An. coluzzii and 208 (35.1%) were An. funestus (s.s.). A total of 26 (4.39%) mosquito specimens were infected by Plasmodium sp. and the three Anopheles mosquitoes transmitted Plasmodium at equal efficiency. Surprisingly, we found an An. coluzzii specimen infected by Plasmodium vivax, which confirms circulation of this species in Cameroon. The positivity of all 26 PCR-positive Plasmodium-infected mosquitoes was successively confirmed by sequencing analysis. CONCLUSION: Our study presents the baseline malaria parasite burden in Tibati, Adamawa Region, Cameroon. Our results highlight the high malaria endemicity in the area, and hotspots of disease transmission are identified. Parasitological indices suggest low bednet usage and that implementation of control interventions in the area is needed to reduce malaria burden. We also report for the first time a mosquito vector with naturally acquired P. vivax infection in Cameroon.
Subject(s)
Anopheles/drug effects , Anopheles/physiology , Insecticides/pharmacology , Malaria/transmission , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Adolescent , Adult , Aged , Animals , Anopheles/classification , Anopheles/parasitology , Cameroon/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Insecticide-Treated Bednets/statistics & numerical data , Malaria/epidemiology , Malaria/parasitology , Male , Middle Aged , Mosquito Control , Mosquito Vectors/classification , Mosquito Vectors/parasitology , Plasmodium/classification , Plasmodium/genetics , Plasmodium/isolation & purification , Plasmodium/physiology , Young AdultABSTRACT
The spread of Plasmodium falciparum resistant parasites remains one of the major challenges for malaria control and elimination in Sub Saharan Africa. Monitoring of molecular markers conferring resistance to different antimalarials is important to track the spread of resistant parasites and to optimize the therapeutic lifespan of current drugs. This study aimed to evaluate the prevalence of known mutations in the drug resistance genes Pfcrt, Pfmdr1, Pfdhfr and Pfdhps in two different epidemiological settings in Cameroon. Dried blood spots collected in 2018 and 2019 from asymptomatic individuals were used for DNA extraction and then the Plasmodium infection status was determined byPCR. Detection of SNPs was performed by nested PCR followed by allele-specific restriction analysis (ASRA). The prevalence of each genotype was compared between sites using the Chi square and Fisher's exact tests. A high prevalence of the Pfcrt K76 wild type allele was found in both sites (88.5 and 62.29% respectively; P< 0,0001). The prevalence of Pfmdr1 mutations 86Y and 1246Y was respectively 55.83 and 1.45% in Mfou and 45.87 and 5.97% in Tibati, with significant difference between the studied areas (P<0.0001). Overall, the Pfdhfr triple-mutant genotype (51I/59R/108N) was highly prevalent (> 96%), however no SNP was detected at codon 164. In Pfdhps, the prevalence of the 437G mutation reached (90%) and was at higher frequency in Mfou (P< 0.0001). Overall, the Pfdhps mutations 540E and 581G were less common (0.33 and 3.26%, respectively). The quadruple resistant genotype (Pfdhfr 51I/59R/108N+Pfdhp437G) was found almost 90% of the samples. The wild-type genotype (Pfdhfr N51/C59/S108/164I+Pfdhps A437/K540/A581) was never identified and the sextuple mutant (Pfdhfr 51I/59R/108N+Pfdhp437G/540E/581G), kwon as super resistant appeared in two samples from Tibati. These findings demonstrate declining trends in the prevalence of mutations conferring resistance to 4-aminoquinolines, especially to chloroquine. However, a high level of mutations in P. falciparum genes related to SP resistance was detected and this raises concerns about the future efficacy of IPTp-SP and SMC in Cameroon.
Subject(s)
Antimalarials , Malaria, Falciparum , Cameroon , Drug Resistance , PrevalenceABSTRACT
The specific immune response to the Anopheles salivary peptide could be a pertinent and complementary tool to assess the risk of malaria transmission and the effectiveness of vector control strategies. This study aimed to obtain first reliable data on the current state of the Anopheles gSG6-P1 biomarker for assess the level of exposure to Anopheles bites in high malaria endemic areas in Cameroon. Blood smears were collected from people living in the neighborhoods of Youpwe (suburban area, continental) and Manoka (rural area, Island), both areas in the coastal region of Cameroon. Malaria infection was determined using thick blood smear microscopy, whereas the level of specific IgG response to gSG-P1 peptide was assessed by enzyme-linked immunosorbent assay from the dried blood spots. Of 266 (153 from Youpwe, 113 from Manoka) malaria endemic residents (mean age: 22.8±19.8 years, age range: 6 months-94 years, male/female sex ratio: 1/1.2, with Manoka mean age: 23.71±20.53, male/female sex ratio:1/1.13 and Youpwe mean age: 22.12±19.22, male/female sex ratio 1/0.67) randomly included in the study, Plasmodium infection prevalence was significantly higher in Manoka than in Youpwe (64.6% vs 12,4%, p = 0.0001). The anti-gSG6-P1 IgG response showed a high inter-individual heterogeneity and was significantly higher among individuals from Manoka than those from Youpwe (p = 0.023). Malaria infected individuals presented a higher anti-gSG6-P1 IgG antibody response than non-infected (p = 0.0004). No significant difference in the level of specific IgG response to gSG-P1 was observed according to long lasting insecticidal nets use. Taken together, the data revealed that human IgG antibody response to Anopheles gSG-P1 salivary peptide could be also used to assess human exposure to malaria vectors in Central African region. This finding strengthens the relevance of this candidate biomarker to be used for measuring human exposure to malaria vectors worldwide.
Subject(s)
Anopheles/parasitology , Immunoglobulin G/blood , Insect Proteins/immunology , Malaria, Falciparum/epidemiology , Mosquito Vectors/parasitology , Plasmodium falciparum/immunology , Salivary Proteins and Peptides/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Cameroon/epidemiology , Child , Child, Preschool , Dried Blood Spot Testing , Endemic Diseases , Female , Humans , Immunoglobulin G/biosynthesis , Infant , Insect Proteins/blood , Malaria, Falciparum/diagnosis , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Prevalence , Rural Population , Salivary Proteins and Peptides/blood , Urban PopulationABSTRACT
The emergence of artemisinin-resistant parasites since the late 2000s at the border of Cambodia and Thailand poses serious threats to malaria control globally, particularly in Africa which bears the highest malaria transmission burden. This study aimed to obtain reliable data on the current state of the kelch13 molecular marker for artemisinin resistance in Plasmodium falciparum in Cameroon. DNA was extracted from the dried blood spots collected from epidemiologically distinct endemic areas in the Center, Littoral and North regions of Cameroon. Nested PCR products from the Kelch13-propeller gene were sequenced and analyzed on an ABI 3730XL automatic sequencer. Of 219 dried blood spots, 175 were sequenced successfully. We identified six K13 mutations in 2.9% (5/175) of samples, including 2 non-synonymous, the V589I allele had been reported in Africa already and one new allele E612K had not been reported yet. These two non-synonymous mutations were uniquely found in parasites from the Littoral region. One sample showed two synonymous mutations within the kelch13 gene. We also observed two infected samples with mixed K13 mutant and K13 wild-type infection. Taken together, our data suggested the circulation of the non-synonymous K13 mutations in Cameroon. Albeit no mutations known to be associated with parasite clearance delays in the study population, there is need for continuous surveillance for earlier detection of resistance as long as ACTs are used and scaled up in the community.