Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
EMBO J ; 41(4): e109108, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35019161

ABSTRACT

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.


Subject(s)
Frontotemporal Lobar Degeneration/pathology , Membrane Glycoproteins/metabolism , Microglia/physiology , Monocytes/metabolism , Progranulins/deficiency , Receptors, Immunologic/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Brain/diagnostic imaging , Brain/physiopathology , Disease Models, Animal , Female , Frontotemporal Lobar Degeneration/metabolism , Humans , Lysosomes/metabolism , Lysosomes/pathology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Monocytes/drug effects , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Syk Kinase/metabolism
2.
J Biol Chem ; 297(4): 101120, 2021 10.
Article in English | MEDLINE | ID: mdl-34450161

ABSTRACT

GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.


Subject(s)
C9orf72 Protein/biosynthesis , DNA Repeat Expansion , Models, Biological , Peptide Chain Elongation, Translational/drug effects , Porphyrins/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , HeLa Cells , Humans , Polyribosomes/metabolism
3.
Nature ; 526(7573): 443-7, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26322584

ABSTRACT

Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-ß peptide. Two principal physiological pathways either prevent or promote amyloid-ß generation from its precursor, ß-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-ß fragments generated by the α- and ß-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (ß-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-ß). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Hippocampus/cytology , Matrix Metalloproteinases, Membrane-Associated/metabolism , Neurons/physiology , Proteolysis , ADAM Proteins/metabolism , ADAM10 Protein , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/deficiency , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/cerebrospinal fluid , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/deficiency , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Calcium Signaling , Disease Models, Animal , Female , Hippocampus/enzymology , Hippocampus/physiology , Humans , In Vitro Techniques , Long-Term Potentiation , Male , Matrix Metalloproteinases, Membrane-Associated/deficiency , Membrane Proteins/metabolism , Mice , Molecular Weight , Neurites/enzymology , Neurites/metabolism , Neurons/enzymology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Plaque, Amyloid , Protein Processing, Post-Translational , Single-Cell Analysis
4.
Acta Neuropathol ; 139(1): 99-118, 2020 01.
Article in English | MEDLINE | ID: mdl-31642962

ABSTRACT

Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous ribonucleoprotein (hnRNP) A3 as an interactor of the sense repeat RNA that reduces its translation into DPRs. Furthermore, we found that hnRNPA3 is depleted from the nucleus and partially mislocalized to cytoplasmic poly-GA inclusions in C9orf72 patients, suggesting that poly-GA sequesters hnRNPA3 within the cytoplasm. We now demonstrate that hnRNPA3 also binds to the antisense repeat RNA. Both DPR production and deposition from sense and antisense RNA repeats are increased upon hnRNPA3 reduction. All DPRs induced DNA double strand breaks (DSB), which was further enhanced upon reduction of hnRNPA3. Poly-glycine-arginine and poly-proline-arginine increased foci formed by phosphorylated Ataxia Telangiectasia Mutated (pATM), a major sensor of DSBs, whereas poly-glycine-alanine (poly-GA) evoked a reduction of pATM foci. In dentate gyri of C9orf72 patients, lower nuclear hnRNPA3 levels were associated with increased DNA damage. Moreover, enhanced poly-GA deposition correlated with reduced pATM foci. Since cytoplasmic pATM deposits partially colocalized with poly-GA deposits, these results suggest that poly-GA, the most frequent DPR observed in C9orf72 patients, differentially causes DNA damage and that poly-GA selectively sequesters pATM in the cytoplasm inhibiting its recruitment to sites of DNA damage. Thus, mislocalization of nuclear hnRNPA3 caused by poly-GA leads to increased poly-GA production, which partially depletes pATM, and consequently enhances DSB.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , C9orf72 Protein/genetics , Dinucleotide Repeats/physiology , Frontotemporal Lobar Degeneration/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Aged , Amyotrophic Lateral Sclerosis/metabolism , DNA Damage/genetics , Female , Frontotemporal Lobar Degeneration/metabolism , Humans , Male , Middle Aged , Phosphorylation
5.
EMBO Rep ; 17(9): 1314-25, 2016 09.
Article in English | MEDLINE | ID: mdl-27461252

ABSTRACT

Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat-dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci.


Subject(s)
Dipeptides/metabolism , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Proteins/genetics , RNA, Messenger/genetics , Animals , Brain/metabolism , C9orf72 Protein , Fibroblasts , Gene Knockdown Techniques , HeLa Cells , Humans , Neurons/metabolism , Protein Binding , Protein Transport , Pyramidal Cells/metabolism , RNA Transport , RNA, Small Interfering/genetics , Rats
6.
EMBO J ; 29(20): 3571-89, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20842103

ABSTRACT

Aggregation of α-synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA-mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin Δ1-79 or by DJ-1 C106A.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Membrane Fusion/physiology , Mitochondria/metabolism , Oncogene Proteins/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Line , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/genetics , Mitochondria/ultrastructure , Oncogene Proteins/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Deglycase DJ-1 , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , alpha-Synuclein/genetics
7.
Mol Neurodegener ; 19(1): 50, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902734

ABSTRACT

BACKGROUND: The key pathological signature of ALS/ FTLD is the mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm. However, TDP-43 gain of function in the cytoplasm is still poorly understood since TDP-43 animal models recapitulating mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm are missing. METHODS: CRISPR/Cas9 technology was used to generate a zebrafish line (called CytoTDP), that mis-locates endogenous TDP-43 from the nucleus to the cytoplasm. Phenotypic characterization of motor neurons and the neuromuscular junction was performed by immunostaining, microglia were immunohistochemically localized by whole-mount tissue clearing and muscle ultrastructure was analyzed by scanning electron microscopy. Behavior was investigated by video tracking and quantitative analysis of swimming parameters. RNA sequencing was used to identify mis-regulated pathways with validation by molecular analysis. RESULTS: CytoTDP fish have early larval phenotypes resembling clinical features of ALS such as progressive motor defects, neurodegeneration and muscle atrophy. Taking advantage of zebrafish's embryonic development that solely relys on yolk usage until 5 days post fertilization, we demonstrated that microglia proliferation and activation in the hypothalamus is independent from food intake. By comparing CytoTDP to a previously generated TDP-43 knockout line, transcriptomic analyses revealed that mis-localization of endogenous TDP-43, rather than TDP-43 nuclear loss of function, leads to early onset metabolic dysfunction. CONCLUSIONS: The new TDP-43 model mimics the ALS/FTLD hallmark of progressive motor dysfunction. Our results suggest that functional deficits of the hypothalamus, the metabolic regulatory center, might be the primary cause of weight loss in ALS patients. Cytoplasmic gain of function of endogenous TDP-43 leads to metabolic dysfunction in vivo that are reminiscent of early ALS clinical non-motor metabolic alterations. Thus, the CytoTDP zebrafish model offers a unique opportunity to identify mis-regulated targets for therapeutic intervention early in disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Disease Models, Animal , Motor Neurons , Zebrafish Proteins , Zebrafish , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Animals, Genetically Modified , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology
8.
Article | MEDLINE | ID: mdl-37914416

ABSTRACT

OBJECTIVES: Neurodegeneration is considered a relevant pathophysiologic feature in neurologic disorders associated with antibodies against glutamic acid decarboxylase 65 (GAD65). In this study, we investigate surrogates of neuroaxonal damage in relation to disease duration and clinical presentation. METHODS: In a multicentric cohort of 50 patients, we measured serum neurofilament light chain (sNfL) in relation to disease duration and disease phenotypes, applied automated MRI volumetry, and analyzed clinical characteristics. RESULTS: In patients with neurologic disorders associated with GAD65 antibodies, we detected elevated sNfL levels early in the disease course. By contrast, this elevation of sNfL levels was less pronounced in patients with long-standing disease. Increased sNfL levels were observed in patients presenting with cerebellar ataxia and limbic encephalitis, but not in those with stiff person syndrome. Using MRI volumetry, we identified atrophy predominantly of the cerebellar cortex, cerebellar superior posterior lobe, and cerebral cortex with similar atrophy patterns throughout all clinical phenotypes. DISCUSSION: Together, our data provide evidence for early neuroaxonal damage and support the need for timely therapeutic interventions in GAD65 antibody-associated neurologic disorders.


Subject(s)
Cerebellar Ataxia , Nervous System Diseases , Stiff-Person Syndrome , Humans , Atrophy , Autoantibodies
9.
J Neurol ; 271(10): 6991-6999, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39254698

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA), an atypical parkinsonian syndrome, is a rapidly progressive neurodegenerative disease with currently no established fluid biomarkers available. MSA is characterized by an oligodendroglial α-synucleinopathy, progressive neuronal cell loss and concomitant astrocytosis. Here, we investigate glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as fluid biomarkers for differential diagnosis, assessment of clinical disease severity and prediction of disease progression in MSA. METHODS: GFAP and NfL levels were analyzed in plasma and CSF samples of 47 MSA patients as well as 24 Parkinson's disease (PD) and 25 healthy controls (HC) as reference cohorts. In MSA, biomarker levels were correlated to baseline and longitudinal clinical disease severity (UMSARS scores). RESULTS: In MSA, GFAP levels in CSF and plasma predicted baseline clinical disease severity as indicated by UMSARS scores, while NfL levels predicted clinical disease progression as indicated by longitudinal changes in UMSARS scores. Cross-sectionally, NfL levels in CSF and plasma were significantly elevated in MSA compared to both PD and HC. Receiver operating curves (ROC) indicated high diagnostic accuracy of NfL for distinguishing MSA from PD (CSF: AUC = 0.97, 95% CI 0.90-1.00; plasma: AUC = 0.90, 95% CI 0.81-1.00). DISCUSSION: In MSA, GFAP shows promise as novel biomarker for assessing current clinical disease severity, while NfL might serve as biomarker for prediction of disease progression and differential diagnosis of MSA against PD.


Subject(s)
Biomarkers , Disease Progression , Glial Fibrillary Acidic Protein , Multiple System Atrophy , Neurofilament Proteins , Severity of Illness Index , Humans , Multiple System Atrophy/diagnosis , Multiple System Atrophy/blood , Multiple System Atrophy/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Male , Female , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Middle Aged , Aged , Parkinson Disease/diagnosis , Parkinson Disease/blood , Parkinson Disease/cerebrospinal fluid , Cross-Sectional Studies , Diagnosis, Differential , ROC Curve
10.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838131

ABSTRACT

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Subject(s)
Brain , Dependovirus , Disease Models, Animal , Frontotemporal Lobar Degeneration , Mice, Knockout , Progranulins , Animals , Humans , Mice , Brain/metabolism , Brain/pathology , Dependovirus/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Genetic Therapy , Phosphorylation , Progranulins/metabolism , Progranulins/genetics , Receptors, Transferrin/metabolism
11.
Neurology ; 102(1): e207901, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165362

ABSTRACT

BACKGROUND AND OBJECTIVES: Corticobasal syndrome (CBS) with underlying 4-repeat tauopathy is a progressive neurodegenerative disease characterized by declining cognitive and motor functions. Biomarkers for assessing pathologic brain changes in CBS including tau-PET, 18 kDa translocator protein (TSPO)-PET, structural MRI, neurofilament light chain (NfL), or glial fibrillary acidic protein (GFAP) have recently been evaluated for differential diagnosis and disease staging, yet their association with disease trajectories remains unclear. Therefore, we performed a head-to-head comparison of neuroimaging (tau-PET, TSPO-PET, structural MRI) and plasma biomarkers (NfL, GFAP) as prognostic tools for longitudinal clinical trajectories in ß-amyloid (Aß)-negative CBS. METHODS: We included patients with clinically diagnosed Aß-negative CBS with clinical follow-up data who underwent baseline structural MRI and plasma-NfL analysis for assessing neurodegeneration, [18F]PI-2620-PET for assessing tau pathology, [18F]GE-180-PET for assessing microglia activation, and plasma-GFAP analysis for assessing astrocytosis. To quantify tau and microglia load, we assessed summary scores of whole-brain, cortical, and subcortical PET signal. For structural MRI analysis, we quantified subcortical and cortical gray matter volume. Plasma NfL and GFAP values were assessed using Simoa-based immunoassays. Symptom progression was determined using a battery of cognitive and motor tests (i.e., Progressive Supranuclear Palsy Rating Scale [PSPRS]). Using linear mixed models, we tested whether the assessed biomarkers at baseline were associated with faster symptom progression over time (i.e., time × biomarker interaction). RESULTS: Overall, 21 patients with Aß-negative CBS with ∼2-year clinical follow-up data were included. Patients with CBS with more widespread global tau-PET signal showed faster clinical progression (PSPRS: B/SE = 0.001/0.0005, p = 0.025), driven by cortical rather than subcortical tau-PET. By contrast, patients with higher global [18F]GE-180-PET readouts showed slower clinical progression (PSPRS: B/SE = -0.056/0.023, p = 0.019). No association was found between gray matter volume and clinical progression. Concerning fluid biomarkers, only higher plasma-NfL (PSPRS: B/SE = 0.176/0.046, p < 0.001) but not GFAP was associated with faster clinical deterioration. In a subsequent sensitivity analysis, we found that tau-PET, TSPO-PET, and plasma-NfL showed significant interaction effects with time on clinical trajectories when tested in the same model. DISCUSSION: [18F]PI-2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL show prognostic potential for clinical progression in patients with Aß-negative CBS with probable 4-repeat tauopathy, which can be useful for clinical decision-making and stratifying patients in clinical trials.


Subject(s)
Corticobasal Degeneration , Neurodegenerative Diseases , Tauopathies , Humans , Intermediate Filaments , Amyloid beta-Peptides , Biomarkers , Disease Progression , Receptors, GABA
12.
J Biol Chem ; 287(7): 5156-63, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22194595

ABSTRACT

Regulated intramembrane proteolysis is a widely accepted concept describing the processing of various transmembrane proteins via ectodomain shedding followed by an intramembrane cleavage. The resulting cleavage products can be involved in reverse signaling. Presenilins, which constitute the active center of the γ-secretase complex, signal peptide peptidase (SPP), and its homologues, the SPP-like (SPPL) proteases are members of the family of intramembrane-cleaving aspartyl proteases of the GXGD-type. We recently demonstrated that Bri2 (itm2b) is a substrate for regulated intramembrane proteolysis by SPPL2a and SPPL2b. Intramembrane cleavage of Bri2 is triggered by an initial shedding event catalyzed by A Disintegrin and Metalloprotease 10 (ADAM10). Additionally primary sequence determinants within the intracellular domain, the transmembrane domain and the luminal juxtamembrane domain are required for efficient cleavage of Bri2 by SPPL2b. Using mutagenesis and circular dichroism spectroscopy we now demonstrate that a high α-helical content of the Bri2 transmembrane domain (TMD) reduces cleavage efficiency of Bri2 by SPPL2b, while the presence of a GXXXG dimerization motif influences the intramembrane cleavage only to a minor extent. Surprisingly, only one of the four conserved intramembrane glycine residues significantly affects the secondary structure of the Bri2 TMD and thereby its intramembrane cleavage. Other glycine residues do not influence the α-helical content of the transmembrane domain nor its intramembrane processing.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Membrane Proteins/metabolism , Proteolysis , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Adaptor Proteins, Signal Transducing , Amino Acid Motifs , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Circular Dichroism/methods , HEK293 Cells , Humans , Membrane Glycoproteins , Membrane Proteins/genetics , Mutagenesis , Protein Structure, Tertiary
13.
Acta Neuropathol Commun ; 11(1): 112, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37434215

ABSTRACT

Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1ß, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.


Subject(s)
Antibodies, Monoclonal , Intermediate Filaments , Animals , Mice , Epitopes , Immunization , NF-kappa B
14.
J Biol Chem ; 286(52): 45063-72, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22065584

ABSTRACT

Anti-amyloidogenic processing of the amyloid precursor protein APP by α-secretase prevents formation of the amyloid-ß peptide, which accumulates in senile plaques of Alzheimer disease patients. α-Secretase belongs to the family of a disintegrin and metalloproteases (ADAMs), and ADAM10 is the primary candidate for this anti-amyloidogenic activity. We recently demonstrated that ADAM10 translation is repressed by its 5'-UTR and that in particular the first half of ADAM10 5'-UTR is responsible for translational repression. Here, we asked whether specific sequence motifs exist in the ADAM10 5'-UTR that are able to form complex secondary structures and thus potentially inhibit ADAM10 translation. Using circular dichroism spectroscopy, we demonstrate that a G-rich region between nucleotides 66 and 94 of the ADAM10 5'-UTR forms a highly stable, intramolecular, parallel G-quadruplex secondary structure under physiological conditions. Mutation of guanines in this sequence abrogates the formation of the G-quadruplex structure. Although the G-quadruplex structure efficiently inhibits translation of a luciferase reporter in in vitro translation assays and in living cells, inhibition of G-quadruplex formation fails to do so. Moreover, expression of ADAM10 was similarly repressed by the G-quadruplex. Mutation of the G-quadruplex motif results in a significant increase of ADAM10 levels and consequently APPsα secretion. Thus, we identified a critical RNA secondary structure within the 5'-UTR, which contributes to the translational repression of ADAM10.


Subject(s)
5' Untranslated Regions/physiology , ADAM Proteins/biosynthesis , Amyloid Precursor Protein Secretases/biosynthesis , Membrane Proteins/biosynthesis , Nucleic Acid Conformation , Protein Biosynthesis/physiology , ADAM Proteins/genetics , ADAM10 Protein , Amyloid Precursor Protein Secretases/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Mutation
15.
Neurobiol Dis ; 47(1): 61-74, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22472189

ABSTRACT

A mutation in the coding region of the Tor1A gene, resulting in a deletion of a glutamic acid residue in the torsinA protein (∆ETorA), is the major cause of the inherited autosomal-dominant early onset torsion dystonia (DYT1). The pathophysiological consequences of this amino acid loss are still not understood. Currently available animal models for DYT1 dystonia provided important insights into the disease; however, they differ with respect to key features of torsinA associated pathology. We developed transgenic rat models harboring the full length human mutant and wildtype Tor1A gene. A complex phenotyping approach including classical behavioral tests, electrophysiology and neuropathology revealed a progressive neurological phenotype in ∆ETorA expressing rats. Furthermore, we were able to replicate key pathological features of torsinA associated pathology in a second species, such as nuclear envelope pathology, behavioral abnormalities and plasticity changes. We therefore suggest that this rat model represents an appropriate new model suitable to further investigate the pathophysiology of ∆ETorA and to test for therapeutic approaches.


Subject(s)
Disease Models, Animal , Dystonia Musculorum Deformans/genetics , Molecular Chaperones/genetics , Sequence Deletion , Animals , Humans , Rats , Rats, Transgenic
16.
Front Neurol ; 13: 1011470, 2022.
Article in English | MEDLINE | ID: mdl-36247773

ABSTRACT

To pave the way for healthy aging in early treated phenylketonuria (ETPKU) patients, a better understanding of the neurological course in this population is needed, requiring easy accessible biomarkers to monitor neurological disease progression in large cohorts. The objective of this pilot study was to investigate the potential of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as blood biomarkers to indicate changes of the central nervous system in ETPKU. In this single-center cross-sectional study, GFAP and NfL concentrations in serum were quantified using the Simoa® multiplex technology in 56 ETPKU patients aged 6-36 years and 16 age matched healthy controls. Correlation analysis and hierarchical linear regression analysis were performed to investigate an association with disease-related biochemical parameters and retinal layers assessed by optical coherence tomography. ETPKU patients did not show significantly higher GFAP concentrations (mean 73 pg/ml) compared to healthy controls (mean 60 pg/ml, p = 0.140). However, individual pediatric and adult ETPKU patients had GFAP concentrations above the healthy control range. In addition, there was a significant association of GFAP concentrations with current plasma tyrosine concentrations (r = -0.482, p = 0.036), a biochemical marker in phenylketonuria, and the retinal inner nuclear layer volume (r = 0.451, p = 0.04). There was no evidence of NfL alterations in our ETPKU cohort. These pilot results encourage multicenter longitudinal studies to further investigate serum GFAP as a complementary tool to better understand and monitor neurological disease progression in ETPKU. Follow-up investigations on aging ETPKU patients are required to elucidate the potential of serum NfL as biomarker.

17.
Lancet Neurol ; 21(4): 329-341, 2022 04.
Article in English | MEDLINE | ID: mdl-35305339

ABSTRACT

BACKGROUND: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid ß (Aß) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aß40, Aß42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aß42 (ß=-4·28 × 10-2 [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (ß=-5·51 × 10-3 [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aß42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=-0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aß42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aß aggregation and further support the role of TREM2 on Aß plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aß deposition, Aß-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing. FUNDING: German Research Foundation, US National Institutes of Health.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Membrane Glycoproteins , Adult , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides , Biomarkers , Cognition/physiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Humans , Membrane Glycoproteins/cerebrospinal fluid , Membrane Glycoproteins/genetics , Middle Aged , Receptors, Immunologic/genetics , United States
18.
J Biol Chem ; 285(21): 15753-60, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20348102

ABSTRACT

Proteolytic processing of the amyloid precursor protein by alpha-secretase prevents formation of the amyloid beta-peptide (Abeta), which is the main constituent of amyloid plaques in brains of Alzheimer disease (AD) patients. alpha-Secretase activity is decreased in AD, and overexpression of the alpha-secretase ADAM10 (a disintegrin and metalloprotease 10) in an AD animal model prevents amyloid pathology. ADAM10 has a 444-nucleotide-long, very GC-rich 5'-untranslated region (5'-UTR) with two upstream open reading frames. Because similar properties of 5'-UTRs are found in transcripts of many genes, which are regulated by translational control mechanisms, we asked whether ADAM10 expression is translationally controlled by its 5'-UTR. We demonstrate that the 5'-UTR of ADAM10 represses the rate of ADAM10 translation. In the absence of the 5'-UTR, we observed a significant increase of ADAM10 protein levels in HEK293 cells, whereas mRNA levels were not changed. Moreover, the 5'-UTR of ADAM10 inhibits translation of a luciferase reporter in an in vitro transcription/translation assay. Successive deletion of the first half of the ADAM10 5'-UTR revealed a striking increase in ADAM10 protein expression in HEK293 cells, suggesting that this part of the 5'-UTR contains inhibitory elements for translation. Moreover, we detect an enhanced alpha-secretase activity and consequently reduced Abeta levels in the conditioned medium of HEK293 cells expressing both amyloid precursor protein and a 5'-UTR-ADAM10 deletion construct lacking the first half of the 5'-UTR. Thus, we provide evidence that the 5'-UTR of ADAM10 may have an important role for post-transcriptional regulation of ADAM10 expression and consequently Abeta production.


Subject(s)
5' Untranslated Regions , ADAM Proteins/biosynthesis , Amyloid Precursor Protein Secretases/biosynthesis , Amyloid beta-Peptides/biosynthesis , Gene Expression Regulation, Enzymologic , Membrane Proteins/biosynthesis , Protein Biosynthesis , ADAM Proteins/genetics , ADAM10 Protein , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/genetics , Animals , Base Sequence , Brain/enzymology , COS Cells , Chlorocebus aethiops , Humans , Membrane Proteins/genetics , Sequence Deletion
19.
Biol Chem ; 392(11): 995-1001, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21848507

ABSTRACT

Nicastrin is a type I transmembrane glycoprotein, which is part of the high molecular weight γ-secretase complex. γ-Secretase is one of the key players associated with the generation of Alzheimer's disease pathology, since it liberates the neurotoxic amyloid ß-peptide. Four proteins Nicastrin, anterior pharynx-defective-1 (Aph-1), presenilin enhancer-2 (Pen-2) and Presenilin are essential to form the active γ-secretase complex. Recently it has been shown, that Nicastrin has a key function in stabilizing the mature γ-secretase complex and may also be involved in substrate recognition. So far no structural data for the Nicastrin ectodomain or any other γ-secretase component are available. We therefore used Circular Dichroism (CD) spectroscopy to demonstrate that Nicastrin, similar to its homologues, the Streptomyces griseus aminopeptidase (SGAP) and the transferrin receptor (TfR), adopts a thermostable secondary structure. Furthermore, the Nicastrin ectodomain has an exceptionally high propensity to refold after thermal denaturation. These findings provide evidence to further support the hypothesis that Nicastrin may share evolutionary conserved properties with the aminopeptidase and the transferrin receptor family.


Subject(s)
Amyloid Precursor Protein Secretases/chemistry , Membrane Glycoproteins/chemistry , Alzheimer Disease/metabolism , Aminopeptidases/chemistry , Cell Line , Circular Dichroism , Humans , Protein Refolding , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Transferrin/chemistry , Streptomyces griseus/enzymology , Temperature
20.
Brain Pathol ; 30(1): 36-45, 2020 01.
Article in English | MEDLINE | ID: mdl-31099449

ABSTRACT

Aggregation of amyloid-ß (Aß) that leads to the formation of plaques in Alzheimer's disease (AD) occurs through the stepwise formation of oligomers and fibrils. An earlier onset of aggregation is obtained upon intracerebral injection of Aß-containing brain homogenate into human APP transgenic mice that follows a prion-like seeding mechanism. Immunoprecipitation of these brain extracts with anti-Aß oligomer antibodies or passive immunization of the recipient animals abrogated the observed seeding activity, although induced Aß deposition was still evident. Here, we establish that, together with Aß monomers, Aß oligomers trigger the initial phase of Aß seeding and that the depletion of oligomeric Aß delays the aggregation process, leading to a transient reduction of seed-induced Aß deposits. This work extends the current knowledge about the role of Aß oligomers beyond its cytotoxic nature by pointing to a role in the initiation of Aß aggregation in vivo. We conclude that Aß oligomers are important for the early initiation phase of the seeding process.


Subject(s)
Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid/metabolism , Amyloid beta-Peptides/physiology , Animals , Brain/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/physiopathology , Protein Aggregation, Pathological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL