Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nature ; 618(7963): 151-158, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198494

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Subject(s)
Glucose , Pancreatic Neoplasms , Ribose , Tumor Microenvironment , Uridine , Animals , Mice , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Ribose/metabolism , Uridine/chemistry , Glucose/deficiency , Cell Division , Cell Line, Tumor , MAP Kinase Signaling System , Uridine Phosphorylase/deficiency , Uridine Phosphorylase/genetics , Uridine Phosphorylase/metabolism , Humans
2.
Nature ; 585(7824): 277-282, 2020 09.
Article in English | MEDLINE | ID: mdl-32879489

ABSTRACT

Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours1-4, but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8+ T cells, thereby lowering intracellular levels of methionine and the methyl donor S-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach.


Subject(s)
Amino Acid Transport System L/metabolism , CD8-Positive T-Lymphocytes/metabolism , Histones/metabolism , Methionine/metabolism , Methylation , Neoplasms/metabolism , Amino Acid Transport System L/deficiency , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Epigenesis, Genetic , Female , Histones/chemistry , Humans , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell/metabolism , STAT5 Transcription Factor/metabolism
3.
PLoS Genet ; 18(7): e1010315, 2022 07.
Article in English | MEDLINE | ID: mdl-35867772

ABSTRACT

Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.


Subject(s)
Hedgehog Proteins , Pancreatic Neoplasms , Adult , Child , Female , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Pancreatic Neoplasms/genetics , Pregnancy , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli3/genetics
4.
Liver Int ; 38(9): 1664-1675, 2018 09.
Article in English | MEDLINE | ID: mdl-29751359

ABSTRACT

BACKGROUND & AIMS: Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. METHODS: WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. RESULTS: Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. CONCLUSIONS: We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases.


Subject(s)
Bile Ducts/injuries , Chemical and Drug Induced Liver Injury/metabolism , Growth Differentiation Factor 2/metabolism , Liver Regeneration , Stem Cells/cytology , Animals , Apoptosis , Cell Proliferation , Chemical and Drug Induced Liver Injury/pathology , Growth Differentiation Factor 2/genetics , Liver/cytology , Liver/injuries , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyridines , Signal Transduction
5.
Arch Toxicol ; 92(9): 2935-2946, 2018 09.
Article in English | MEDLINE | ID: mdl-30097701

ABSTRACT

MicroRNA (miRNA)-mediated gene regulation contributes to liver pathophysiology, including hepatic stellate cell (HSC) activation and fibrosis progression. Here, we investigated the role of miR-942 in human liver fibrosis. The expression of miR-942, HSC activation markers, transforming growth factor-beta pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI), as well as collagen deposition, were investigated in 100 liver specimens from patients with varying degree of hepatitis B virus (HBV)-related fibrosis. Human primary HSCs and the immortalized cell line (LX2 cells) were used for functional studies. We found that miR-942 expression was upregulated in activated HSCs and correlated inversely with BAMBI expression in liver fibrosis progression. Transforming growth factor beta (TGF-ß) and lipopolyssacharide (LPS), two major drivers of liver fibrosis and inflammation, induce miR-942 expression in HSCs via Smad2/3 respective NF-κB/p50 binding to the miR-942 promoter. Mechanistically, the induced miR-942 degrades BAMBI mRNA in HSCs, thereby sensitizing the cells for fibrogenic TGF-ß signaling and also partly mediates LPS-induced proinflammatory HSC fate. In conclusion, the TGF-ß and LPS-induced miR-942 mediates HSC activation through downregulation of BAMBI in human liver fibrosis. Our study provides new insights on the molecular mechanism of HSC activation and fibrosis.


Subject(s)
Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Membrane Proteins/genetics , MicroRNAs/metabolism , Cells, Cultured , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Lipopolysaccharides/pharmacology , Liver Cirrhosis/genetics , Membrane Proteins/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Smad Proteins, Receptor-Regulated/genetics , Smad Proteins, Receptor-Regulated/metabolism , Transforming Growth Factor beta1/pharmacology
6.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559270

ABSTRACT

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

7.
Elife ; 122023 02 02.
Article in English | MEDLINE | ID: mdl-36727849

ABSTRACT

An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by the expression of the enzyme Arginase 1 (ARG1), which we demonstrated is potently expressed in pancreatic tumor-associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, ARG1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8+ T cell infiltration. Additionally, Arg1 deletion induced compensatory mechanisms, including Arg1 overexpression in epithelial cells, namely Tuft cells, and Arg2 overexpression in a subset of macrophages. To overcome these compensatory mechanisms, we used a pharmacological approach to inhibit arginase. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8+ T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Our data demonstrate that Arg1 drives immune suppression in pancreatic cancer by depleting arginine and inhibiting T cell activation.


Subject(s)
Arginase , Pancreatic Neoplasms , Animals , Humans , Mice , Arginase/genetics , Arginase/metabolism , Arginine/metabolism , CD8-Positive T-Lymphocytes , Macrophages , Pancreatic Neoplasms/pathology
8.
Elife ; 122023 05 31.
Article in English | MEDLINE | ID: mdl-37254839

ABSTRACT

Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Amino Acids , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Arginine , Tumor Microenvironment
9.
Clin Cancer Res ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37851080

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is generally divided in two subtypes, classical and basal. Recently, single cell RNA sequencing has uncovered the co-existence of basal and classical cancer cells, as well as intermediary cancer cells, in individual tumors. The latter remains poorly understood; here, we sought to characterize them using a multimodal approach. EXPERIMENTAL DESIGN: We performed subtyping on a single cell RNA sequencing dataset containing 18 human PDAC samples to identify multiple intermediary subtypes. We generated patient-derived PDAC organoids for functional studies. We compared single cell profiling of matched blood and tumor samples to measure changes in the local and systemic immune microenvironment. We then leveraged longitudinally patient-matched blood to follow individual patients over the course of chemotherapy. RESULTS: We identified a cluster of KRT17-high intermediary cancer cells that uniquely express high levels of CXCL8 and other cytokines. The proportion of KRT17High/CXCL8+ cells in patient tumors correlated with intra-tumoral myeloid abundance, and, interestingly, high pro-tumor peripheral blood granulocytes, implicating local and systemic roles. Patient-derived organoids maintained KRT17High/CXCL8+cells and induced myeloid cell migration in an CXCL8-dependent manner. In our longitudinal studies, plasma CXCL8 decreased following chemotherapy in responsive patients, while CXCL8 persistence portended worse prognosis. CONCLUSIONS: Through single cell analysis of PDAC samples we identified KRT17High/CXCL8+ cancer cells as an intermediary subtype, marked by a unique cytokine profile and capable of influencing myeloid cells in the tumor microenvironment and systemically. The abundance of this cell population should be considered for patient stratification in precision immunotherapy.

10.
Cancer Discov ; 12(10): 2237-2239, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36196574

ABSTRACT

In this issue, Abrego and colleagues describe an unexpected role for the mitochondrial enzyme glutamic-oxaloacetic transaminase (GOT2) in pancreatic cancer, whereby it acts as a nuclear fatty acid transporter binding to and activating the PPARδ nuclear receptor. In turn, the GOT2-PPARδaxis drives immunosuppression by suppressing T cell-mediated antitumor immunity. See related article by Abrego et al., p. 2414 (3).


Subject(s)
PPAR delta , Pancreatic Neoplasms , Aspartate Aminotransferase, Mitochondrial/metabolism , Aspartate Aminotransferases/metabolism , Fatty Acids , Humans , Immunosuppression Therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
11.
Oncogene ; 41(29): 3705-3718, 2022 07.
Article in English | MEDLINE | ID: mdl-35732800

ABSTRACT

Patients with estrogen receptor-positive (ER+) breast cancer, the most common subtype, remain at risk for lethal metastatic disease years after diagnosis. Recurrence arises partly because tumor cells in bone marrow become resistant to estrogen-targeted therapy. Here, we utilized a co-culture model of bone marrow mesenchymal stem cells (MSCs) and ER+ breast cancer cells to recapitulate interactions of cancer cells in bone marrow niches. ER+ breast cancer cells in direct contact with MSCs acquire cancer stem-like (CSC) phenotypes with increased resistance to standard antiestrogenic drugs. We confirmed that co-culture with MSCs increased labile iron in breast cancer cells, a phenotype associated with CSCs and disease progression. Clinically approved iron chelators and in-house lysosomal iron-targeting compounds restored sensitivity to antiestrogenic therapy. These findings establish iron modulation as a mechanism to reverse MSC-induced drug resistance and suggest iron modulation in combination with estrogen-targeted therapy as a promising, translatable strategy to treat ER+ breast cancer.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Cell Line, Tumor , Drug Resistance , Drug Resistance, Neoplasm , Estrogen Antagonists/pharmacology , Estrogens/pharmacology , Iron , Receptors, Estrogen
12.
Elife ; 112022 07 11.
Article in English | MEDLINE | ID: mdl-35815941

ABSTRACT

Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Aspartate Aminotransferase, Mitochondrial/genetics , Aspartate Aminotransferase, Mitochondrial/metabolism , Carcinoma, Pancreatic Ductal/pathology , Fatty Acid-Binding Proteins , Humans , Mice , NAD/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Pyruvic Acid/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
13.
Neoplasia ; 23(11): 1078-1088, 2021 11.
Article in English | MEDLINE | ID: mdl-34583246

ABSTRACT

OBJECTIVES: Current standard of care imaging, cytology, or cystic fluid analysis cannot reliably differentiate malignant from benign pancreatic cystic neoplasms. This study sought to determine if the metabolic profile of cystic fluid could distinguish benign and malignant lesions, as well as mucinous and non-mucinous lesions. METHODS: Metabolic profiling by untargeted mass spectrometry and quantitative nuclear magnetic resonance was performed in 24 pancreatic cyst fluid from surgically resected samples with pathological diagnoses and clinicopathological correlation. RESULTS: (Iso)-butyrylcarnitine distinguished malignant from benign pancreatic cysts, with a diagnostic accuracy of 89%. (Iso)-butyrylcarnitine was 28-fold more abundant in malignant cyst fluid compared with benign cyst fluid (P=.048). Furthermore, 5-oxoproline (P=.01) differentiated mucinous from non-mucinous cysts with a diagnostic accuracy of 90%, better than glucose (82% accuracy), a previously described metabolite that distinguishes mucinous from non-mucinous cysts. Combined analysis of glucose and 5-oxoproline did not improve the diagnostic accuracy. In comparison, standard of care cyst fluid carcinoembryonic antigen (CEA) and cytology had a diagnostic accuracy of 40% and 60% respectively for mucinous cysts. (Iso)-butyrylcarnitine and 5-oxoproline correlated with cyst fluid CEA levels (P<.0001 and P<.05 respectively). For diagnosing malignant pancreatic cysts, the diagnostic accuracies of cyst size > 3 cm, ≥ 1 high-risk features, cyst fluid CEA, and cytology are 38%, 75%, 80%, and 75%, respectively. CONCLUSIONS: (Iso)-butyrylcarnitine has potential clinical application for accurately distinguishing malignant from benign pancreatic cysts, and 5-oxoproline for distinguishing mucinous from non-mucinous cysts.


Subject(s)
Adenocarcinoma, Mucinous/diagnosis , Biomarkers, Tumor/metabolism , Cyst Fluid/metabolism , Metabolome , Pancreatic Cyst/diagnosis , Pancreatic Neoplasms/diagnosis , Adenocarcinoma, Mucinous/metabolism , Adult , Aged , Diagnosis, Differential , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pancreatic Cyst/metabolism , Pancreatic Neoplasms/metabolism , Prognosis
14.
Mol Cancer Res ; 19(7): 1182-1195, 2021 07.
Article in English | MEDLINE | ID: mdl-33741715

ABSTRACT

Ewing sarcomas are driven by EWS-ETS fusions, most commonly EWS-FLI1, which promotes widespread metabolic reprogramming, including activation of serine biosynthesis. We previously reported that serine biosynthesis is also activated in Ewing sarcoma by the scaffolding protein menin through as yet undefined mechanisms. Here, we investigated whether EWS-FLI1 and/or menin orchestrate serine biosynthesis via modulation of ATF4, a stress-response gene that acts as a master transcriptional regulator of serine biosynthesis in other tumors. Our results show that in Ewing sarcoma, ATF4 levels are high and that ATF4 modulates transcription of core serine synthesis pathway (SSP) genes. Inhibition of either EWS-FLI1 or menin leads to loss of ATF4, and this is associated with diminished expression of SSP transcripts and proteins. We identified and validated an EWS-FLI1 binding site at the ATF4 promoter, indicating that the fusion can directly activate ATF4 transcription. In contrast, our results suggest that menin-dependent regulation of ATF4 is mediated by transcriptional and post-transcriptional mechanisms. Importantly, our data also reveal that the downregulation of SSP genes that occurs in the context of EWS-FLI1 or menin loss is indicative of broader inhibition of ATF4-dependent transcription. Moreover, we find that menin inhibition similarly leads to loss of ATF4 and the ATF4-dependent transcriptional signature in MLL-rearranged B-cell acute lymphoblastic leukemia, extending our findings to another cancer in which menin serves an oncogenic role. IMPLICATIONS: These studies provide new insights into metabolic reprogramming in Ewing sarcoma and also uncover a previously undescribed role for menin in the regulation of ATF4.


Subject(s)
Activating Transcription Factor 4/genetics , Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Proteins/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Activating Transcription Factor 4/metabolism , Biosynthetic Pathways/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling/methods , HEK293 Cells , Humans , Oncogene Proteins, Fusion/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins/metabolism , RNA Interference , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Serine/genetics , Serine/metabolism
15.
Cancer Res ; 81(16): 4305-4318, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34049975

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with few effective therapeutic options. PDAC is characterized by an extensive fibroinflammatory stroma that includes abundant infiltrating immune cells. Tumor-associated macrophages (TAM) are prevalent within the stroma and are key drivers of immunosuppression. TAMs in human and murine PDAC are characterized by elevated expression of apolipoprotein E (ApoE), an apolipoprotein that mediates cholesterol metabolism and has known roles in cardiovascular and Alzheimer's disease but no known role in PDAC. We report here that ApoE is also elevated in peripheral blood monocytes in PDAC patients, and plasma ApoE protein levels stratify patient survival. Orthotopic implantation of mouse PDAC cells into syngeneic wild-type or in ApoE-/- mice showed reduced tumor growth in ApoE-/- mice. Histologic and mass cytometric (CyTOF) analysis of these tumors showed an increase in CD8+ T cells in tumors in ApoE-/- mice. Mechanistically, ApoE induced pancreatic tumor cell expression of Cxcl1 and Cxcl5, known immunosuppressive factors, through LDL receptor and NF-κB signaling. Taken together, this study reveals a novel immunosuppressive role of ApoE in the PDAC microenvironment. SIGNIFICANCE: This study shows that elevated apolipoprotein E in PDAC mediates immune suppression and high serum apolipoprotein E levels correlate with poor patient survival.See related commentary by Sherman, p. 4186.


Subject(s)
Apolipoproteins E/metabolism , Chemokine CXCL1/biosynthesis , NF-kappa B/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Fibroblasts/metabolism , Humans , Immune System , Immunosuppression Therapy , Inflammation , Macrophages/metabolism , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , RNA-Seq , Receptors, LDL/metabolism , Signal Transduction , Single-Cell Analysis , Treatment Outcome
16.
Life Sci Alliance ; 4(6)2021 06.
Article in English | MEDLINE | ID: mdl-33782087

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of C1qa, C1qb, Trem2, and Chil3 Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other with high Chil3, Ly6c2 and Plac8 In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of C1QA, C1QB, and TREM2 is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients.


Subject(s)
Monocytes/metabolism , Pancreatic Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Adult , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carrier Proteins , Complement C1q , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Macrophages/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Proteins , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Receptors, Complement , Receptors, Immunologic/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome/genetics , Tumor Microenvironment/genetics , Tumor-Associated Macrophages/physiology , Pancreatic Neoplasms
17.
Clin Cancer Res ; 27(7): 2023-2037, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33495315

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN: We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS: We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS: Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/pathology , Hedgehog Proteins/physiology , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Hedgehog Proteins/antagonists & inhibitors , Humans , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Signal Transduction/physiology , Tumor Microenvironment
18.
Nat Commun ; 12(1): 4860, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381026

ABSTRACT

Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.


Subject(s)
Aspartate Aminotransferase, Cytoplasmic/antagonists & inhibitors , Ferroptosis , Pancreatic Neoplasms/metabolism , Animals , Antioxidants/pharmacology , Aspartate Aminotransferase, Cytoplasmic/genetics , Aspartate Aminotransferase, Cytoplasmic/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Cystine/metabolism , Ferroptosis/drug effects , Glutathione/biosynthesis , Humans , Iron/metabolism , Mice , Mitochondria/metabolism , Pancreatic Neoplasms/pathology
19.
Cancer Metab ; 8: 1, 2020.
Article in English | MEDLINE | ID: mdl-31908776

ABSTRACT

BACKGROUND: Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. We have previously shown that central carbon metabolism is rewired in pancreatic ductal adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate transaminase 1 (GOT1)-dependent pathway. METHODS: We utilized a doxycycline-inducible shRNA-mediated strategy to knockdown GOT1 in PDA and colorectal cancer (CRC) cell lines and tumor models of similar genotype. These cells were analyzed for the ability to form colonies and tumors to test if tissue type impacted GOT1 dependence. Additionally, the ability of GOT1 to impact the response to chemo- and radiotherapy was assessed. Mechanistically, the associated specimens were examined using a combination of steady-state and stable isotope tracing metabolomics strategies and computational modeling. Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for experiments comparing multiple groups with one changing variable. Student's t test (unpaired, two-tailed) was performed when comparing two groups to each other. Metabolomics data comparing three PDA and three CRC cell lines were analyzed by performing Student's t test (unpaired, two-tailed) between all PDA metabolites and CRC metabolites. RESULTS: While PDA exhibits profound growth inhibition upon GOT1 knockdown, we found CRC to be insensitive. In PDA, but not CRC, GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and redox homeostasis. These insights were leveraged in PDA, where we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on tumor growth. CONCLUSIONS: Taken together, these results illustrate the role of tissue type in dictating metabolic dependencies and provide new insights for targeting metabolism to treat PDA.

20.
Cancer Discov ; 10(3): 422-439, 2020 03.
Article in English | MEDLINE | ID: mdl-31911451

ABSTRACT

Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFß ligands and, accordingly, their depletion reprogramed the fibroblast population, with loss of tumor-restraining, smooth muscle actin-expressing fibroblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6, and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4+ T-cell responses. Our data point to new mechanisms regulating fibroblast differentiation in pancreatic cancer and support the notion that fibroblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis. SIGNIFICANCE: Here, we describe an unexpected cross-talk between Tregs and fibroblasts in pancreatic cancer. Treg depletion resulted in differentiation of inflammatory fibroblast subsets, in turn driving infiltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer.See related commentary by Aykut et al., p. 345.This article is highlighted in the In This Issue feature, p. 327.


Subject(s)
Carcinogenesis/genetics , Pancreatic Neoplasms/genetics , Receptors, CCR1/genetics , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , Carcinogenesis/immunology , Chemokine CCL3/genetics , Chemokine CCL8/genetics , Chemokines, CC/genetics , Disease Models, Animal , Fibroblasts/immunology , Fibroblasts/metabolism , Humans , Mice , Pancreas/immunology , Pancreas/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Transforming Growth Factor beta/genetics , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL