Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nature ; 618(7963): 151-158, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198494

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Subject(s)
Glucose , Pancreatic Neoplasms , Ribose , Tumor Microenvironment , Uridine , Animals , Mice , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Ribose/metabolism , Uridine/chemistry , Glucose/deficiency , Cell Division , Cell Line, Tumor , MAP Kinase Signaling System , Uridine Phosphorylase/deficiency , Uridine Phosphorylase/genetics , Uridine Phosphorylase/metabolism , Humans
2.
Gut ; 70(10): 1904-1913, 2021 10.
Article in English | MEDLINE | ID: mdl-32883872

ABSTRACT

OBJECTIVE: A comprehensive analysis of the immune landscape of pancreatic neuroendocrine tumours (PanNETs) was performed according to clinicopathological parameters and previously defined molecular subtypes to identify potential therapeutic vulnerabilities in this disease. DESIGN: Differential expression analysis of 600 immune-related genes was performed on 207 PanNET samples, comprising a training cohort (n=72) and two validation cohorts (n=135) from multiple transcriptome profiling platforms. Different immune-related and subtype-related phenotypes, cell types and pathways were investigated using different in silico methods and were further validated using spatial multiplex immunofluorescence. RESULTS: The study identified an immune signature of 132 genes segregating PanNETs (n=207) according to four previously defined molecular subtypes: metastasis-like primary (MLP)-1 and MLP-2, insulinoma-like and intermediate. The MLP-1 subtype (26%-31% samples across three cohorts) was strongly associated with elevated levels of immune-related genes, poor prognosis and a cascade of tumour evolutionary events: larger hypoxic and necroptotic tumours leading to increased damage-associated molecular patterns (viral mimicry), stimulator of interferon gene pathway, T cell-inflamed genes, immune checkpoint targets, and T cell-mediated and M1 macrophage-mediated immune escape mechanisms. Multiplex spatial profiling validated significantly increased macrophages in the MLP-1 subtype. CONCLUSION: This study provides novel data on the immune microenvironment of PanNETs and identifies MLP-1 subtype as an immune-high phenotype featuring a broad and robust activation of immune-related genes. This study, with further refinement, paves the way for future precision immunotherapy studies in PanNETs to potentially select a subset of MLP-1 patients who may be more likely to respond.


Subject(s)
Genes, Neoplasm/immunology , Molecular Mimicry/immunology , Neuroendocrine Tumors/immunology , Pancreatic Neoplasms/immunology , Tumor Microenvironment/immunology , Disease Progression , Female , Gene Expression Profiling , Humans , Male , Neoplasm Grading , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Phenotype , Prognosis , Tumor Burden
3.
BMC Bioinformatics ; 19(1): 182, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29801433

ABSTRACT

BACKGROUND: To ensure cancer patients are stratified towards treatments that are optimally beneficial, it is a priority to define robust molecular subtypes using clustering methods applied to high-dimensional biological data. If each of these methods produces different numbers of clusters for the same data, it is difficult to achieve an optimal solution. Here, we introduce "polyClustR", a tool that reconciles clusters identified by different methods into subtype "communities" using a hypergeometric test or a measure of relative proportion of common samples. RESULTS: The polyClustR pipeline was initially tested using a breast cancer dataset to demonstrate how results are compatible with and add to the understanding of this well-characterised cancer. Two uveal melanoma datasets were then utilised to identify and validate novel subtype communities with significant metastasis-free prognostic differences and associations with known chromosomal aberrations. CONCLUSION: We demonstrate the value of the polyClustR approach of applying multiple consensus clustering algorithms and systematically reconciling the results in identifying novel subtype communities of two cancer types, which nevertheless are compatible with established understanding of these diseases. An R implementation of the pipeline is available at: https://github.com/syspremed/polyClustR.


Subject(s)
Neoplasms/classification , Software , Algorithms , Breast Neoplasms/classification , Cluster Analysis , Female , Humans , Melanoma/classification , Melanoma/secondary , Prognosis , Uveal Neoplasms/classification , Uveal Neoplasms/pathology
4.
BMC Bioinformatics ; 14: 338, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24261687

ABSTRACT

BACKGROUND: Determining sample sizes for metabolomic experiments is important but due to the complexity of these experiments, there are currently no standard methods for sample size estimation in metabolomics. Since pilot studies are rarely done in metabolomics, currently existing sample size estimation approaches which rely on pilot data can not be applied. RESULTS: In this article, an analysis based approach called MetSizeR is developed to estimate sample size for metabolomic experiments even when experimental pilot data are not available. The key motivation for MetSizeR is that it considers the type of analysis the researcher intends to use for data analysis when estimating sample size. MetSizeR uses information about the data analysis technique and prior expert knowledge of the metabolomic experiment to simulate pilot data from a statistical model. Permutation based techniques are then applied to the simulated pilot data to estimate the required sample size. CONCLUSIONS: The MetSizeR methodology, and a publicly available software package which implements the approach, are illustrated through real metabolomic applications. Sample size estimates, informed by the intended statistical analysis technique, and the associated uncertainty are provided.


Subject(s)
Metabolomics/statistics & numerical data , Algorithms , Animals , Computer Simulation , Longitudinal Studies , Models, Statistical , Nuclear Magnetic Resonance, Biomolecular/methods , Pilot Projects , Principal Component Analysis/standards , Sample Size , Software
5.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33678606

ABSTRACT

BACKGROUND: Rectal cancers show a highly varied response to neoadjuvant radiotherapy/chemoradiation (RT/CRT) and the impact of the tumor immune microenvironment on this response is poorly understood. Current clinical tumor regression grading systems attempt to measure radiotherapy response but are subject to interobserver variation. An unbiased and unique histopathological quantification method (change in tumor cell density (ΔTCD)) may improve classification of RT/CRT response. Furthermore, immune gene expression profiling (GEP) may identify differences in expression levels of genes relevant to different radiotherapy responses: (1) at baseline between poor and good responders, and (2) longitudinally from preradiotherapy to postradiotherapy samples. Overall, this may inform novel therapeutic RT/CRT combination strategies in rectal cancer. METHODS: We generated GEPs for 53 patients from biopsies taken prior to preoperative radiotherapy. TCD was used to assess rectal tumor response to neoadjuvant RT/CRT and ΔTCD was subjected to k-means clustering to classify patients into different response categories. Differential gene expression analysis was performed using statistical analysis of microarrays, pathway enrichment analysis and immune cell type analysis using single sample gene set enrichment analysis. Immunohistochemistry was performed to validate specific results. The results were validated using 220 pretreatment samples from publicly available datasets at metalevel of pathway and survival analyses. RESULTS: ΔTCD scores ranged from 12.4% to -47.7% and stratified patients into three response categories. At baseline, 40 genes were significantly upregulated in poor (n=12) versus good responders (n=21), including myeloid and stromal cell genes. Of several pathways showing significant enrichment at baseline in poor responders, epithelial to mesenchymal transition, coagulation, complement activation and apical junction pathways were validated in external cohorts. Unlike poor responders, good responders showed longitudinal (preradiotherapy vs postradiotherapy samples) upregulation of 198 immune genes, reflecting an increased T-cell-inflamed GEP, type-I interferon and macrophage populations. Longitudinal pathway analysis suggested viral-like pathogen responses occurred in post-treatment resected samples compared with pretreatment biopsies in good responders. CONCLUSION: This study suggests potentially druggable immune targets in poor responders at baseline and indicates that tumors with a good RT/CRT response reprogrammed from immune "cold" towards an immunologically "hot" phenotype on treatment with radiotherapy.


Subject(s)
Biological Mimicry/immunology , Neoadjuvant Therapy , Rectal Neoplasms/therapy , Transcriptome , Tumor Microenvironment , Viruses/immunology , Adult , Aged , Aged, 80 and over , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Host-Pathogen Interactions , Humans , Longitudinal Studies , Male , Middle Aged , Neoadjuvant Therapy/adverse effects , Oligonucleotide Array Sequence Analysis , Radiotherapy, Adjuvant , Rectal Neoplasms/genetics , Rectal Neoplasms/immunology , Time Factors , Treatment Outcome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
BMC Bioinformatics ; 11: 571, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21092268

ABSTRACT

BACKGROUND: Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. RESULTS: Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence intervals for estimated model parameters throughout. The optimal number of principal components is determined through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high dimensionality of the data. CONCLUSIONS: The methods presented are illustrated through an application to metabolomic data sets. Jointly modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as loadings, allows for principled and clear interpretation of the underlying data structure. A software package called MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation of the presented methods in the metabolomics field.


Subject(s)
Metabolomics/methods , Principal Component Analysis , Algorithms , Databases, Factual
7.
Cancers (Basel) ; 12(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007815

ABSTRACT

One of the major challenges in defining clinically-relevant and less heterogeneous tumor subtypes is assigning biological and/or clinical interpretations to etiological (intrinsic) subtypes. Conventional clustering/subtyping approaches often fail to define such subtypes, as they involve several discrete steps. Here we demonstrate a unique machine-learning method, phenotype mapping (PhenMap), which jointly integrates single omics data with phenotypic information using three published breast cancer datasets (n = 2045). The PhenMap framework uses a modified factor analysis method that is governed by a key assumption that, features from different omics data types are correlated due to specific "hidden/mapping" variables (context-specific mapping variables (CMV)). These variables can be simultaneously modeled with phenotypic data as covariates to yield functional subtypes and their associated features (e.g., genes) and phenotypes. In one example, we demonstrate the identification and validation of six novel "functional" (discrete) subtypes with differential responses to a cyclin-dependent kinase (CDK)4/6 inhibitor and etoposide by jointly integrating transcriptome profiles with four different drug response data from 37 breast cancer cell lines. These robust subtypes are also present in patient breast tumors with different prognosis. In another example, we modeled patient gene expression profiles and clinical covariates together to identify continuous subtypes with clinical/biological implications. Overall, this genome-phenome machine-learning integration tool, PhenMap identifies functional and phenotype-integrated discrete or continuous subtypes with clinical translational potential.

8.
ESMO Open ; 5(5): e000847, 2020 09.
Article in English | MEDLINE | ID: mdl-32967918

ABSTRACT

BACKGROUND: Colon cancer (CC) is a heterogeneous disease. Novel prognostic factors beyond pathological staging are required to accurately identify patients at higher risk of relapse. Integrating these new biological factors, such as plasma circulating tumour DNA (ctDNA), CDX2 staining, inflammation-associated cytokines and transcriptomic consensus molecular subtypes (CMS) classification, into a multimodal approach may improve our accuracy in determining risk of recurrence. METHODS: One hundred and fifty patients consecutively diagnosed with localised CC were prospectively enrolled in our study. ctDNA was tracked to detect minimal residual disease by droplet digital PCR. CDX2 expression was analysed by immunostaining. Plasma levels of cytokines potentially involved in disease progression were measured using ELISAs. A 96 custom gene panel for nCounter assay was used to classify CC into colorectal cancer assigner and CMS. RESULTS: Most patients were classified into CMS4 (37%) and CMS2 (28%), followed by CMS1 (20%) and CMS3 (15%) groups. CDX2-negative tumours were enriched in CMS1 and CMS4 subtypes. In univariable analysis, prognosis was influenced by primary tumour location, stage, vascular and perineural invasion together with high interleukin-6 plasma levels at baseline, tumours belonging to CMS 1 vs CMS2 +CMS3, ctDNA presence in plasma and CDX2 loss. However, only positive ctDNA in plasma samples (HR 13.64; p=0.002) and lack of CDX2 expression (HR 23.12; p=0.001) were found to be independent prognostic factors for disease-free survival in the multivariable model. CONCLUSIONS: ctDNA detection after surgery and lack of CDX2 expression identified patients at very high risk of recurrence in localised CC.


Subject(s)
Circulating Tumor DNA , Colonic Neoplasms , Biomarkers, Tumor/genetics , CDX2 Transcription Factor/genetics , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Humans , Neoplasm Recurrence, Local/genetics , Prognosis
9.
Article in English | MEDLINE | ID: mdl-33015526

ABSTRACT

PURPOSE: Metastatic colorectal cancers (mCRCs) assigned to the transit-amplifying (TA) CRCAssigner subtype are more sensitive to anti-epidermal growth factor receptor (EGFR) therapy. We evaluated the association between the intratumoral presence of TA signature (TA-high/TA-low, dubbed as TA-ness classification) and outcomes in CRCs treated with anti-EGFR therapy. PATIENTS AND METHODS: The TA-ness classes were defined in a discovery cohort (n = 84) and independently validated in a clinical trial (CO.20; cetuximab monotherapy arm; n = 121) and other samples using an established NanoString-based gene expression assay. Progression-free survival (PFS), overall survival (OS), and disease control rate (DCR) according to TA-ness classification were assessed by univariate and multivariate analyses. RESULTS: The TA-ness was measured in 772 samples from 712 patients. Patients (treated with anti-EGFR therapy) with TA-high tumors had significantly longer PFS (discovery hazard ratio [HR], 0.40; 95% CI, 0.25 to 0.64; P < .001; validation HR, 0.65; 95% CI, 0.45 to 0.93; P = .018), longer OS (discovery HR, 0.48; 95% CI, 0.29 to 0.78; P = .003; validation HR, 0.67; 95% CI, 0.46 to 0.98; P = .04), and higher DCR (discovery odds ratio [OR]; 14.8; 95% CI, 4.30 to 59.54; P < .001; validation OR, 4.35; 95% CI, 2.00 to 9.09; P < .001). TA-ness classification and its association with anti-EGFR therapy outcomes were further confirmed using publicly available data (n = 80) from metastatic samples (PFS P < .001) and patient-derived xenografts (P = .042). In an exploratory analysis of 55 patients with RAS/BRAF wild-type and left-sided tumors, TA-high class was significantly associated with longer PFS and trend toward higher response rate (PFS HR, 0.53; 95% CI, 0.28 to 1.00; P = .049; OR, 5.88; 95% CI, 0.71 to 4.55; P = .09; response rate 33% in TA-high and 7.7% in TA-low). CONCLUSION: TA-ness classification is associated with prognosis in patients with mCRC treated with anti-EGFR therapy and may further help understanding the value of sidedness in patients with RAS/BRAF wild-type tumors.

10.
NPJ Breast Cancer ; 5: 21, 2019.
Article in English | MEDLINE | ID: mdl-31396557

ABSTRACT

Breast cancer is a highly heterogeneous disease. Although differences between intrinsic breast cancer subtypes have been well studied, heterogeneity within each subtype, especially luminal-A cancers, requires further interrogation to personalize disease management. Here, we applied well-characterized and cancer-associated heterocellular signatures representing stem, mesenchymal, stromal, immune, and epithelial cell types to breast cancer. This analysis stratified the luminal-A breast cancer samples into five subtypes with a majority of them enriched for a subtype (stem-like) that has increased stem and stromal cell gene signatures, representing potential luminal progenitor origin. The enrichment of immune checkpoint genes and other immune cell types in two (including stem-like) of the five heterocellular subtypes of luminal-A tumors suggest their potential response to immunotherapy. These immune-enriched subtypes of luminal-A tumors (containing only estrogen receptor positive samples) showed good or intermediate prognosis along with the two other differentiated subtypes as assessed using recurrence-free and distant metastasis-free patient survival outcomes. On the other hand, a partially differentiated subtype of luminal-A breast cancer with transit-amplifying colon-crypt characteristics showed poor prognosis. Furthermore, published luminal-A subtypes associated with specific somatic copy number alterations and mutations shared similar cellular and mutational characteristics to colorectal cancer subtypes where the heterocellular signatures were derived. These heterocellular subtypes reveal transcriptome and cell-type based heterogeneity of luminal-A and other breast cancer subtypes that may be useful for additional understanding of the cancer type and potential patient stratification and personalized medicine.

11.
Sci Rep ; 9(1): 7665, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113981

ABSTRACT

Previously, we classified colorectal cancers (CRCs) into five CRCAssigner (CRCA) subtypes with different prognoses and potential treatment responses, later consolidated into four consensus molecular subtypes (CMS). Here we demonstrate the analytical development and validation of a custom NanoString nCounter platform-based biomarker assay (NanoCRCA) to stratify CRCs into subtypes. To reduce costs, we switched from the standard nCounter protocol to a custom modified protocol. The assay included a reduced 38-gene panel that was selected using an in-house machine-learning pipeline. We applied NanoCRCA to 413 samples from 355 CRC patients. From the fresh frozen samples (n = 237), a subset had matched microarray/RNAseq profiles (n = 47) or formalin-fixed paraffin-embedded (FFPE) samples (n = 58). We also analyzed a further 118 FFPE samples. We compared the assay results with the CMS classifier, different platforms (microarrays/RNAseq) and gene-set classifiers (38 and the original 786 genes). The standard and modified protocols showed high correlation (> 0.88) for gene expression. Technical replicates were highly correlated (> 0.96). NanoCRCA classified fresh frozen and FFPE samples into all five CRCA subtypes with consistent classification of selected matched fresh frozen/FFPE samples. We demonstrate high and significant subtype concordance across protocols (100%), gene sets (95%), platforms (87%) and with CMS subtypes (75%) when evaluated across multiple datasets. Overall, our NanoCRCA assay with further validation may facilitate prospective validation of CRC subtypes in clinical trials and beyond.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/classification , Oligonucleotide Array Sequence Analysis/methods , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling/methods , Humans , Oligonucleotide Array Sequence Analysis/standards , Tissue Array Analysis/methods
12.
Sci Rep ; 7(1): 10849, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883548

ABSTRACT

Genome projects now generate large-scale data often produced at various time points by different laboratories using multiple platforms. This increases the potential for batch effects. Currently there are several batch evaluation methods like principal component analysis (PCA; mostly based on visual inspection), and sometimes they fail to reveal all of the underlying batch effects. These methods can also lead to the risk of unintentionally correcting biologically interesting factors attributed to batch effects. Here we propose a novel statistical method, finding batch effect (findBATCH), to evaluate batch effect based on probabilistic principal component and covariates analysis (PPCCA). The same framework also provides a new approach to batch correction, correcting batch effect (correctBATCH), which we have shown to be a better approach to traditional PCA-based correction. We demonstrate the utility of these methods using two different examples (breast and colorectal cancers) by merging gene expression data from different studies after diagnosing and correcting for batch effects and retaining the biological effects. These methods, along with conventional visual inspection-based PCA, are available as a part of an R package exploring batch effect (exploBATCH; https://github.com/syspremed/exploBATCH ).


Subject(s)
Genetic Association Studies , Genomics , Models, Statistical , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Databases, Genetic , Female , Genetic Association Studies/methods , Genetic Association Studies/standards , Genomics/methods , Genomics/standards , Humans
13.
Nat Med ; 21(11): 1350-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26457759

ABSTRACT

Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-ß activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.


Subject(s)
Carcinoma/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/genetics , Transforming Growth Factor beta/genetics , Carcinoma/classification , Carcinoma/pathology , Colorectal Neoplasms/classification , Colorectal Neoplasms/pathology , Consensus , CpG Islands , DNA Copy Number Variations/genetics , DNA Methylation , Gene Expression Profiling , Genes, myc/genetics , Humans , Information Dissemination , Microsatellite Instability , Mutation/genetics , Neovascularization, Pathologic/pathology , Phenotype , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , Wnt Signaling Pathway/genetics , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL