Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 582
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(11): 2080-2087, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36288729

ABSTRACT

Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought.


Subject(s)
Epilepsy , Seizures, Febrile , Child , Humans , Pedigree , Electroencephalography , Seizures, Febrile/genetics , Phenotype , Epilepsy/genetics
2.
Mol Psychiatry ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227432

ABSTRACT

Valproic acid (VPA) is an effective and widely used anti-seizure medication but is teratogenic when used during pregnancy, affecting brain and spinal cord development for reasons that remain largely unclear. Here we designed a genetic recombinase-based SOX10 reporter system in human pluripotent stem cells that enables tracking and lineage tracing of Neural Crest cells (NCCs) in a human organoid model of the developing neural tube. We found that VPA induces extensive cellular senescence and promotes mesenchymal differentiation of human NCCs. We next show that the clinically approved drug Rapamycin inhibits senescence and restores aberrant NCC differentiation trajectory after VPA exposure in human organoids and in developing zebrafish, highlighting the therapeutic promise of this approach. Finally, we identify the pioneer factor AP1 as a key element of this process. Collectively our data reveal cellular senescence as a central driver of VPA-associated neurodevelopmental teratogenicity and identifies a new pharmacological strategy for prevention. These results exemplify the power of genetically modified human stem cell-derived organoid models for drug discovery.

3.
Brain ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315931

ABSTRACT

Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-ß (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.

4.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484473

ABSTRACT

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/drug therapy , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Glycogen/metabolism , Autophagy , Diabetes Mellitus/metabolism
5.
Neuroimage ; 296: 120682, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38866195

ABSTRACT

Accurate resection cavity segmentation on MRI is important for neuroimaging research involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour intensive. Automated pipelines are an efficient potential solution; however, most have been developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy of four automated segmentation pipelines following surgical resection in a mixed cohort of subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks. We manually segmented the resection cavity of 50 consecutive subjects who underwent epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient (DSC) for each algorithm compared to the manual segmentation. No algorithm identified all resection cavities. ResectVol (n = 44, 88 %) and Epic-CHOP (n = 42, 84 %) were able to detect more resection cavities than Resseg (n = 22, 44 %, P < 0.001) and Deep Resection (n = 23, 46 %, P < 0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the deep learning-based pipelines in the overall and extratemporal surgery cohorts. In the temporal cohort, the SPM-based pipelines had higher detection rates, however there was no difference in the accuracy between methods. These pipelines could be applied to machine learning studies of outcome prediction to improve efficiency in pre-processing data, however human quality control is still required.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Adult , Female , Male , Epilepsy/surgery , Epilepsy/diagnostic imaging , Young Adult , Image Processing, Computer-Assisted/methods , Middle Aged , Adolescent , Algorithms , Neurosurgical Procedures/methods , Neuroimaging/methods
6.
Clin Immunol ; 265: 110304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964633

ABSTRACT

Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.


Subject(s)
Cladribine , Cytokines , Immunity, Innate , Monocytes , Multiple Sclerosis, Relapsing-Remitting , Humans , Cladribine/therapeutic use , Cladribine/pharmacology , Immunity, Innate/drug effects , Female , Male , Adult , Prospective Studies , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Monocytes/immunology , Monocytes/drug effects , Middle Aged , Cytokines/blood , Cytokines/immunology , Receptors, Purinergic P2X7/immunology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Young Adult
7.
J Neuroinflammation ; 21(1): 172, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014496

ABSTRACT

Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Inflammasomes , Humans , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/immunology , Inflammasomes/metabolism , Animals , Epilepsy, Post-Traumatic/metabolism , Epilepsy, Post-Traumatic/etiology
8.
J Neuroinflammation ; 21(1): 122, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720343

ABSTRACT

Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Klebsiella Infections , Klebsiella pneumoniae , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Mice , Klebsiella Infections/pathology , Klebsiella Infections/microbiology , Female , Male , Cytokines/metabolism , Bronchoalveolar Lavage Fluid
9.
Ann Neurol ; 94(5): 825-835, 2023 11.
Article in English | MEDLINE | ID: mdl-37597255

ABSTRACT

OBJECTIVE: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE. METHODS: We studied 134 families with ≥ 2 first or second-degree relatives with temporal lobe epilepsy, with clear mesial ictal semiology required in at least one individual. PRS were calculated for 227 FMTLE cases, 124 unaffected relatives, and 16,077 population controls. RESULTS: The age of patients with FMTLE onset ranged from 2.5 to 70 years (median = 18, interquartile range = 13-28 years). The most common focal seizure symptom was déjà vu (62% of cases), followed by epigastric rising sensation (34%), and fear or anxiety (22%). The clinical spectrum included rare cases with drug-resistance and/or hippocampal sclerosis. FMTLE cases had a higher mean focal epilepsy PRS than population controls (odds ratio = 1.24, 95% confidence interval = 1.06, 1.46, p = 0.007); in contrast, no enrichment for the febrile seizure PRS was observed. INTERPRETATION: FMTLE is a generally mild drug-responsive syndrome with déjà vu being the commonest symptom. In contrast to dominant monogenic focal epilepsy syndromes, our molecular data support a polygenic basis for FMTLE. Furthermore, the PRS data suggest that sub-genome-wide significant focal epilepsy genome-wide association study single nucleotide polymorphisms are important risk variants for FMTLE. ANN NEUROL 2023;94:825-835.


Subject(s)
Epilepsy, Temporal Lobe , Seizures, Febrile , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/diagnosis , Genome-Wide Association Study , Seizures, Febrile/genetics , Magnetic Resonance Imaging , Electroencephalography , Syndrome , Hippocampus
10.
NMR Biomed ; 37(8): e5142, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38494895

ABSTRACT

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Animals , Brain Injuries, Traumatic/diagnostic imaging , Male , Rats , Bayes Theorem
11.
Article in English | MEDLINE | ID: mdl-39299778

ABSTRACT

BACKGROUND: Concerns have recently been raised about risks to the fetus resulting from paternal exposure to antiseizure medications (ASMs). To address these concerns, we conducted a systematic review of the literature to assess neurodevelopmental and anatomical outcomes in offspring born to fathers taking ASMs at the time of conception. METHODS: Electronic searches of MEDLINE, PsycINFO, and Embase were conducted to identify human studies published in English that reported on outcomes, comprising neurodevelopmental disorders, major congenital malformations, small-for-gestational age or low birth weight, in offspring of fathers taking ASMs at conception. Quality analysis of included studies was undertaken using the Newcastle-Ottawa Scale. A narrative synthesis was used to report study findings. RESULTS: Of 923 studies identified by the search and screened by title and abstract, 26 underwent full-text review and 10 met eligibility criteria. There was limited evidence available, but there appeared to be no clear evidence for an adverse impact of paternal ASM use on offspring outcomes. Few isolated adverse findings were not replicated by other investigations. Several methodological limitations prevented meta-analysis, including failure by most studies to report outcomes separately for each individual ASM, heterogeneity in measurement and outcome reporting, and small numbers of monotherapy exposures. CONCLUSIONS: Although there were limited data available, this systematic review provides reassuring evidence that paternal exposure to ASMs at conception is unlikely to pose any major risk of adverse outcomes for the offspring. Further research is needed to examine the relationship between preconception ASM use in males and offspring outcomes at birth and postnatally.

12.
Brain Behav Immun ; 123: 383-396, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349286

ABSTRACT

Intimate partner violence is a serious, but underappreciated, issue that predominantly affects women and often results in concussion (i.e., mild traumatic brain injury). However, concussion in intimate partner violence is unique because it often involves a concomitant strangulation which may exacerbate or alter the physiology and clinical presentation of the brain injury. Therefore, here we conducted human and rodent studies to provide insight into knowledge gaps related to the detection, pathophysiology, and functional consequences of intimate partner violence-related brain injury. We conducted the first study to analyze blood biomarkers and symptoms of brain injury in intimate partner violence patients presenting to an emergency department within 72 h of concussion. Intimate partner violence concussion patients, some of whom had also experienced a concomitant strangulation, had elevated serum neurofilament light and worse brain injury symptoms compared to healthy control, orthopedic trauma, and non-intimate partner violence concussion groups. We also developed the first rat model of non-fatal strangulation and examined the consequences of strangulation and concussion in isolation and in combination on pathophysiology, blood biomarkers, and behavior at 2 h and 1wk post-injury. Rats exposed to combined strangulation and concussion had exacerbated motor and cognitive deficits, neuroinflammation, and serum glial fibrillary acidic protein levels compared with either injury in isolation. Taken together, these rodent findings demonstrate that a concomitant strangulation modifies and exacerbates concussion pathophysiology, biomarkers, and functional consequences. Overall, these findings provide novel insights into intimate partner violence-related brain injury and provides a foundation for future translational studies.

13.
Epilepsia ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096302

ABSTRACT

OBJECTIVE: Functional seizures (FS) account for 20%-25% of referrals to specialist epilepsy clinics. They are associated with major disability, increased mortality, and frequent and costly health care use. Current guidelines emphasize the importance of implementing clinical pathways to coordinate and deliver effective treatment, but there are few targeted evidence-based interventions that reliably improve patient outcomes, and treatment resources are limited. We conducted a retrospective evaluation of Re-PROGRAM, a novel, brief intervention for functional seizure patients, to assess its feasibility in an outpatient setting. METHODS: Twenty-nine patients with FS undertook Re-PROGRAM between August 2020 and January 2022 at the Alfred Hospital Functional Seizures Clinic, Melbourne, Australia. The intervention comprised five 60-90-min consecutive weekly appointments via telehealth, where psychologists engaged patients in a structured program of seizure management skills, lifestyle modification, and behavioral activation strategies. Following the intervention, patient feedback was collected in routine clinical follow-up as well as with a 24-item self-report pre-/postintervention comparison questionnaire. RESULTS: All 29 patients who enrolled in Re-PROGRAM completed the scheduled sessions. Of those who returned the postintervention questionnaire (n = 16), 15 reported a reduction in seizure frequency. Four patients were lost to follow-up. Of the remaining nine, eight reported seizure frequency reduction during clinical follow-up. Qualitative analysis of the feedback revealed the majority of patients reported reduced seizure duration, intensity, and bothersomeness, and patients felt improvements in their sense of control over seizures, confidence to use seizure control strategies, assertive communication, problem solving, coping skills, relationships with others, and their day-to-day functioning. SIGNIFICANCE: This retrospective evaluation demonstrates the feasibility and acceptability of Re-PROGRAM as a brief intervention for individuals diagnosed with FS delivered in a clinical outpatient setting and warrants further investigation in larger scale, randomized controlled studies.

14.
Epilepsia ; 65(2): e20-e26, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38031503

ABSTRACT

The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) regulatory proteins (TARPs), γ2 (stargazin), γ3, γ4, γ5, γ7, and γ8, are a family of proteins that regulate AMPAR trafficking, expression, and biophysical properties that could have a role in the development of absence seizures. Here, we evaluated the expression of TARPs and AMPARs across the development of epilepsy in the genetic absence epilepsy rats from Strasbourg (GAERS) model of idiopathic generalized epilepsy (IGE) with absence seizures. Pre-epileptic (7-day-old), early epileptic (6-week-old), and chronically epileptic (16-week-old) GAERS, and age-matched male nonepileptic control rats (NEC) were used. Electroencephalographic (EEG) recordings were acquired from the 6- and 16-week-old animals to quantify seizure expression. Somatosensory cortex (SCx) and whole thalamus were collected from all the animals to evaluate TARP and AMPAR mRNA expression. Analysis of the EEG demonstrated a gradual increase in the number and duration of seizures across GAERS development. mRNA expression of the TARPs γ2, γ3, γ4, γ5, and γ8 in the SCx, and γ4 and γ5 in the thalamus, increased as the seizures started and progressed in the GAERS compared to NEC. There was a temporal association between increased TARP expression and seizures in GAERS, highlighting TARPs as potential targets for developing novel treatments for IGE with absence seizures.


Subject(s)
Epilepsy, Absence , Epilepsy, Generalized , Rats , Male , Animals , Epilepsy, Absence/genetics , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Seizures/genetics , RNA, Messenger , Immunoglobulin E , Disease Models, Animal
15.
Epilepsia ; 65(6): 1709-1719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38546705

ABSTRACT

OBJECTIVES: Amygdala enlargement is detected on magnetic resonance imaging (MRI) in some patients with drug-resistant temporal lobe epilepsy (TLE), but its clinical significance remains uncertain We aimed to assess if the presence of amygdala enlargement (1) predicted seizure outcome following anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) and (2) was associated with specific histopathological changes. METHODS: This was a case-control study. We included patients with drug-resistant TLE who underwent ATL-AH with and without amygdala enlargement detected on pre-operative MRI. Amygdala volumetry was done using FreeSurfer for patients who had high-resolution T1-weighted images. Mann-Whitney U test was used to compare pre-operative clinical characteristics between the two groups. The amygdala volume on the epileptogenic side was compared to the amygdala volume on the contralateral side among cases and controls. Then, we used a two-sample, independent t test to compare the means of amygdala volume differences between cases and controls. The chi-square test was used to assess the correlation of amygdala enlargement with (1) post-surgical seizure outcomes and (2) histopathological changes. RESULTS: Nineteen patients with and 19 patients without amygdala enlargement were studied. Their median age at surgery was 38 years for cases and 39 years for controls, and 52.6% were male. There were no statistically significant differences between the two groups in their pre-operative clinical characteristics. There were significant differences in the means of volume difference between cases and controls (Diff = 457.2 mm3, 95% confidence interval [CI] 289.6-624.8; p < .001) and in the means of percentage difference (p < .001). However, there was no significant association between amygdala enlargement and surgical outcome (p = .72) or histopathological changes (p = .63). SIGNIFICANCE: The presence of amygdala enlargement on the pre-operative brain MRI in patients with TLE does not affect the surgical outcome following ATL-AH, and it does not necessarily suggest abnormal histopathology. These findings suggest that amygdala enlargement might reflect a secondary reactive process to seizures in the epileptogenic temporal lobe.


Subject(s)
Amygdala , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , Humans , Amygdala/surgery , Amygdala/pathology , Amygdala/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Male , Female , Adult , Case-Control Studies , Treatment Outcome , Young Adult , Middle Aged , Anterior Temporal Lobectomy/methods , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/pathology , Hippocampus/pathology , Hippocampus/diagnostic imaging , Hippocampus/surgery , Adolescent
16.
Epilepsia ; 2024 Oct 26.
Article in English | MEDLINE | ID: mdl-39460685

ABSTRACT

OBJECTIVE: This study was undertaken to assess long-term safety, tolerability, and efficacy of lacosamide (LCM) as adjunctive therapy for generalized onset tonic-clonic seizures (GTCS) in patients aged ≥4 years with idiopathic generalized epilepsy (IGE). METHODS: EP0012 (NCT02408549) was a phase 3, multicenter, open-label extension (OLE) trial. Patients were enrolled from SP0982 (NCT02408523). Trial duration was ≥2 years (adults) and ≤5 years (children). The trial consisted of a treatment period, ≤4-week taper period, and 30-day safety follow-up. Safety (primary) variables were incidence of treatment-emergent adverse events (TEAEs), discontinuations due to TEAEs, incidence of onset of absence or myoclonic seizures, and increase in days with absence or myoclonic seizures per 28 days. Efficacy (secondary) variable was percent change in GTCS frequency per 28 days. Kaplan-Meier estimated retention rates and analyses by number of lifetime antiseizure medications (ASMs) were performed post hoc. RESULTS: Overall, 239 patients (mean age = 27.9 years, 56.1% female, 18.4% children) were enrolled and received ≥1 dose of LCM in this OLE (median treatment duration = 3.2 years); 157 (65.7%) completed the trial, and 82 (34.3%) discontinued. The most common reason for discontinuation (≥10%) was withdrawn consent (30 [12.6%]). Kaplan-Meier estimated retention rate was 87%, 72%, and 60% at 1, 3, and 5 years, respectively. Overall, 222 (92.9%) patients reported TEAEs; 19 (7.9%) discontinued due to TEAEs. Few patients had an increase in number of days with absence or myoclonic seizures, or incidence of new absence or myoclonic seizures. Median percent change in GTCS frequency per 28 days from the combined baseline was -88.6% (range = -100.0 to 465.4, n = 238). Post hoc analyses demonstrated small numerical differences between patients with 1, 2, and ≥3 lifetime ASMs. SIGNIFICANCE: The results support the use of long-term adjunctive LCM for GTCS in patients with IGE. Long-term adjunctive LCM was efficacious and well tolerated independent of the number of ASMs used before LCM initiation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT02408549.

17.
Epilepsia ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102253

ABSTRACT

OBJECTIVE: Many people with epilepsy experience comorbid anxiety and depression, and antidepressants remain a primary treatment for this. Emerging evidence suggests that these agents may modulate epileptogenesis to influence disease severity. Here, we assessed how treatment with the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine impacts epileptogenic, behavioral, and pathological sequelae following status epilepticus. METHODS: Male Wistar rats received kainic acid to induce status epilepticus (SE) or vehicle (sham). Animals then received either fluoxetine (10 mg/kg/day) or vehicle for 8 weeks via subcutaneous osmotic pump. Video-electroencephalography was recorded continuously until behavioral testing at day 56, including assessments of anxiety- and depression-like behavior and spatial cognition. Postmortem immunocytochemistry studies examined mossy fiber sprouting. RESULTS: Fluoxetine treatment significantly accelerated epileptogenesis following SE, reducing the average period to the first spontaneous seizure (from 32 days [vehicle] to 6 days [fluoxetine], p < .01). Also, fluoxetine exposure magnified the severity of the resultant epilepsy, increasing seizure frequency compared to vehicle (p < .01). Exposure to fluoxetine was associated with improved anxiety- and depression-like behaviors but significantly worsened cognition. Mossy fiber sprouting was more pronounced in fluoxetine-treated rats compared to vehicle (p < .0001). SIGNIFICANCE: Our studies demonstrate that, using a model exhibiting spontaneous seizures, epileptogenesis is accelerated and magnified by fluoxetine, an effect that may be related to more severe pathological neuroplasticity. The differential influence of fluoxetine on behavior indicates that different circuitry and mechanisms are responsible for these comorbidities. These findings suggest that caution should be exercised when prescribing SSRI antidepressants to people at risk of developing epilepsy.

18.
Epilepsia ; 65(6): 1581-1588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498313

ABSTRACT

OBJECTIVE: New-onset refractory status epilepticus (NORSE) is a rare but severe clinical syndrome. Despite rigorous evaluation, the underlying cause is unknown in 30%-50% of patients and treatment strategies are largely empirical. The aim of this study was to describe clinical outcomes in a cohort of well-phenotyped, thoroughly investigated patients who survived the initial phase of cryptogenic NORSE managed in specialist centers. METHODS: Well-characterized cases of cryptogenic NORSE were identified through the EPIGEN and Critical Care EEG Monitoring Research Consortia (CCEMRC) during the period 2005-2019. Treating epileptologists reported on post-NORSE survival rates and sequelae in patients after discharge from hospital. Among survivors >6 months post-discharge, we report the rates and severity of active epilepsy, global disability, vocational, and global cognitive and mental health outcomes. We attempt to identify determinants of outcome. RESULTS: Among 48 patients who survived the acute phase of NORSE to the point of discharge from hospital, 9 had died at last follow-up, of whom 7 died within 6 months of discharge from the tertiary care center. The remaining 39 patients had high rates of active epilepsy as well as vocational, cognitive, and psychiatric comorbidities. The epilepsy was usually multifocal and typically drug resistant. Only a minority of patients had a good functional outcome. Therapeutic interventions were heterogenous during the acute phase of the illness. There was no clear relationship between the nature of treatment and clinical outcomes. SIGNIFICANCE: Among survivors of cryptogenic NORSE, longer-term outcomes in most patients were life altering and often catastrophic. Treatment remains empirical and variable. There is a pressing need to understand the etiology of cryptogenic NORSE and to develop tailored treatment strategies.


Subject(s)
Drug Resistant Epilepsy , Status Epilepticus , Survivors , Humans , Male , Female , Adult , Middle Aged , Young Adult , Adolescent , Treatment Outcome , Electroencephalography , Child
19.
Epilepsia ; 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39401070

ABSTRACT

Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.

20.
Epilepsia ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302576

ABSTRACT

Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL