Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Glob Chang Biol ; 30(3): e17253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38519878

ABSTRACT

Vertebrate species worldwide are currently facing significant declines in many populations. Although we have gained substantial knowledge about the direct threats that affect individual species, these threats only represent a fraction of the broader vertebrate threat profile, which is also shaped by species interactions. For example, threats faced by prey species can jeopardize the survival of their predators due to food resource scarcity. Yet, indirect threats arising from species interactions have received limited investigation thus far. In this study, we investigate the indirect consequences of anthropogenic threats on biodiversity in the context of European vertebrate food webs. We integrated data on trophic interactions among over 800 terrestrial vertebrates, along with their associated human-induced threats. We quantified and mapped the vulnerability of various components of the food web, including species, interactions, and trophic groups to six major threats: pollution, agricultural intensification, climate change, direct exploitation, urbanization, and invasive alien species and diseases. Direct exploitation and agricultural intensification were two major threats for terrestrial vertebrate food webs: affecting 34% and 31% of species, respectively, they threaten 85% and 69% of interactions in Europe. By integrating network ecology with threat impact assessments, our study contributes to a better understanding of the magnitude of anthropogenic impacts on biodiversity.


Subject(s)
Food Chain , Vertebrates , Animals , Humans , Ecology , Biodiversity , Introduced Species , Europe , Ecosystem
2.
Trends Ecol Evol ; 39(5): 427-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38310065

ABSTRACT

At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.


Subject(s)
Biodiversity , Ecosystem , Humans , Climate Change , Conservation of Natural Resources , Food Chain , Models, Biological
3.
Science ; 372(6544): 856-860, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34016780

ABSTRACT

There is an urgent need to protect key areas for biodiversity and nature's contributions to people (NCP). However, different values of nature are rarely considered together in conservation planning. Here, we explore potential priority areas in Europe for biodiversity (all terrestrial vertebrates) and a set of cultural and regulating NCP while considering demand for these NCP. We quantify the spatial overlap between these priorities and their performance in representing different values of nature. We show that different priorities rarely coincide, except in certain irreplaceable ecosystems. Notably, priorities for biodiversity better represent NCP than the reverse. Theoretically, protecting an extra 5% of land has the potential to double conservation gains for biodiversity while also maintaining some essential NCP, leading to co-benefits for both nature and people.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Europe , Phylogeny
4.
Trends Ecol Evol ; 35(12): 1119-1128, 2020 12.
Article in English | MEDLINE | ID: mdl-32977981

ABSTRACT

We are facing a biodiversity crisis at the same time as we are acquiring an unprecedented view of the world's biodiversity. Vast new datasets (e.g., species distributions, traits, phylogenies, and interaction networks) hold knowledge to better comprehend the depths of biodiversity change, reliably anticipate these changes, and inform conservation actions. To harness this information for conservation, we need to integrate the largely independent fields of biodiversity modeling and conservation. We highlight new developments in each respective field, early examples of how they are being brought together, and ideas for a future synthesis such that conservation decisions can be made with fuller awareness of the biodiversity at stake.


Subject(s)
Biodiversity , Conservation of Natural Resources , Phenotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL