Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Food Chem ; 457: 140081, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38908246

ABSTRACT

Shark meat consumption may pose a significant risk to human health as high levels of toxic pollutants bioaccumulate in muscular tissue. Commercial harvest of Carcharhinus brachyurus meat in South Africa is estimated at 100-300 filleted tons per annum. Muscle tissue samples from 41 sharks were collected from the southern and eastern coastlines of South Africa in 2022 and analysed for 10 trace elements and 8 polychlorinated biphenyl congeners. All trace elements were found to be lower than the regulatory maximum limits for human consumption in most samples irrespective of shark length, sex, and sampling region. However, the estimated daily intake for Mercury and Arsenic exceeded the oral reference dose set by international agencies. The meat from this shark may be consumed due to its low toxic potential for human health, however long-term exposure to C. brachyurus meat should be avoided as it could pose detrimental health risks to consumers.


Subject(s)
Food Contamination , Sharks , Trace Elements , Animals , South Africa , Sharks/metabolism , Trace Elements/analysis , Food Contamination/analysis , Polychlorinated Biphenyls/analysis , Seafood/analysis , Humans , Bioaccumulation , Female , Water Pollutants, Chemical/analysis , Male , Mercury/analysis , Arsenic/analysis
2.
Ecol Evol ; 10(8): 3605-3619, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313621

ABSTRACT

Anthropogenic mortality of wildlife is typically inferred from measures of the absolute decline in population numbers. However, increasing evidence suggests that indirect demographic effects including changes to the age, sex, and social structure of populations, as well as the behavior of survivors, can profoundly impact population health and viability. Specifically, anthropogenic mortality of wildlife (especially when unsustainable) and fragmentation of the spatial distribution of individuals (home-ranges) could disrupt natal dispersal mechanisms, with long-term consequences to genetic structure, by compromising outbreeding behavior and gene flow. We investigate this threat in African leopards (Panthera pardus pardus), a polygynous felid with male-biased natal dispersal. Using a combination of spatial (home-range) and genetic (21 polymorphic microsatellites) data from 142 adult leopards, we contrast the structure of two South African populations with markedly different histories of anthropogenically linked mortality. Home-range overlap, parentage assignment, and spatio-genetic autocorrelation together show that historical exploitation of leopards in a recovering protected area has disrupted and reduced subadult male dispersal, thereby facilitating opportunistic male natal philopatry, with sons establishing territories closer to their mothers and sisters. The resultant kin-clustering in males of this historically exploited population is comparable to that of females in a well-protected reserve and has ultimately led to localized inbreeding. Our findings demonstrate novel evidence directly linking unsustainable anthropogenic mortality to inbreeding through disrupted dispersal in a large, solitary felid and expose the genetic consequences underlying this behavioral change. We therefore emphasize the importance of managing and mitigating the effects of unsustainable exploitation on local populations and increasing habitat fragmentation between contiguous protected areas by promoting in situ recovery and providing corridors of suitable habitat that maintain genetic connectivity.

SELECTION OF CITATIONS
SEARCH DETAIL