Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Mol Life Sci ; 80(2): 52, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36695883

ABSTRACT

One of the major mysteries in science is how it is possible to pack the cellular chromatin with a total length of over 1 m, into a small sphere with a diameter of 5 mm "the nucleus", and even more difficult to envisage how to make it functional. Although we know that compaction is achieved through the histones, however, the DNA needs to be accessible to the transcription machinery and this is allowed thanks to a variety of very complex epigenetic mechanisms. Either DNA (methylation) or post-translational modifications of histone proteins (acetylation, methylation, ubiquitination and sumoylation) play a crucial role in chromatin remodelling and consequently on gene expression. Recently the serotonylation and dopaminylation of the histone 3, catalyzed by the Transglutaminase type 2 (TG2), has been reported. These novel post-translational modifications catalyzed by a predominantly cytoplasmic enzyme opens a new avenue for future investigations on the enzyme function itself and for the possibility that other biological amines, substrate of TG2, can influence the genome regulation under peculiar cellular conditions. In this review we analyzed the nuclear TG2's biology by discussing both its post-translational modification of various transcription factors and the implications of its epigenetic new face. Finally, we will focus on the potential impact of these events in human diseases.


Subject(s)
Chromatin Assembly and Disassembly , Cytoplasm , Epigenesis, Genetic , Histones , Transglutaminases , Humans , Acetylation , Chromatin , DNA/genetics , DNA Methylation , Histones/metabolism , Protein Processing, Post-Translational , Transglutaminases/genetics , Transglutaminases/metabolism , Cytoplasm/enzymology , Cytoplasm/genetics , Cytoplasm/metabolism , Cell Nucleus/enzymology , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/physiology
2.
J Immunol ; 206(10): 2420-2429, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33941660

ABSTRACT

We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-ß production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNß production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-ß production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.


Subject(s)
COVID-19/immunology , GTP-Binding Proteins/immunology , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Membrane Proteins/immunology , Protein Serine-Threonine Kinases/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Transglutaminases/immunology , Animals , COVID-19/genetics , COVID-19/pathology , GTP-Binding Proteins/genetics , Humans , Interferon Regulatory Factor-3/genetics , Interferon-beta/genetics , Interferon-beta/immunology , Membrane Proteins/genetics , Mice , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2 , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Transglutaminases/genetics
3.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674717

ABSTRACT

Host-directed therapies are emerging as a promising tool in the curing of difficult-to-treat infections, such as those caused by drug-resistant bacteria. In this study, we aim to test the potential activity of the FDA- and EMA-approved drugs cysteamine and cystamine against Mycobacterium abscessus. In human macrophages (differentiated THP-1 cells), these drugs restricted M. abscessus growth similar to that achieved by amikacin. Here, we use the human ex vivo granuloma-like structures (GLS) model of infection with the M. abscessus rough (MAB-R) and smooth (MAB-S) variants to study the activity of new therapies against M. abscessus. We demonstrate that cysteamine and cystamine show a decrease in the number of total GLSs per well in the MAB-S and MAB-R infected human peripheral blood mononuclear cells (PBMCs). Furthermore, combined administration of cysteamine or cystamine with amikacin resulted in enhanced activity against the two M. abscessus morpho variants compared to treatment with amikacin only. Treatment with cysteamine and cystamine was more effective in reducing GLS size and bacterial load during MAB-S infection compared with MAB-R infection. Moreover, treatment with these two drugs drastically quenched the exuberant proinflammatory response triggered by the MAB-R variant. These findings showing the activity of cysteamine and cystamine against the R and S M. abscessus morphotypes support the use of these drugs as novel host-directed therapies against M. abscessus infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cysteamine/pharmacology , Cysteamine/therapeutic use , Cystamine/pharmacology , Cystamine/therapeutic use , Leukocytes, Mononuclear , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Microbial Sensitivity Tests
4.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198675

ABSTRACT

The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.


Subject(s)
GTP-Binding Proteins/metabolism , Heat Shock Transcription Factors/metabolism , Transglutaminases/metabolism , Animals , Embryonic Development , Heat-Shock Response , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Glutamine gamma Glutamyltransferase 2
5.
EMBO Rep ; 19(7)2018 07.
Article in English | MEDLINE | ID: mdl-29752334

ABSTRACT

Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.


Subject(s)
Cystic Fibrosis/genetics , DNA-Binding Proteins/genetics , GTP-Binding Proteins/genetics , Heat Shock Transcription Factors/genetics , Transglutaminases/genetics , Animals , Cystic Fibrosis/pathology , Gene Expression Regulation , Heat-Shock Response/genetics , Humans , Mice , Promoter Regions, Genetic , Protein Binding , Protein Disulfide-Isomerases/genetics , Protein Glutamine gamma Glutamyltransferase 2 , Protein Processing, Post-Translational/genetics , Proteostasis/genetics , Signal Transduction
6.
Autophagy ; : 1-14, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39113560

ABSTRACT

Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/ß-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFß: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.

7.
Front Immunol ; 14: 1093212, 2023.
Article in English | MEDLINE | ID: mdl-36923406

ABSTRACT

Cystic fibrosis (CF) is a rare autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation is F508del-CFTR (ΔF) which leads the encoded ion channel towards misfolding and premature degradation. The disease is characterized by chronic bronchopulmonary obstruction, inflammation and airways colonization by bacteria, which are the major cause of morbidity and mortality. The STING pathway is the main signaling route activated in the presence of both self and pathogen DNA, leading to Type I Interferon (IFN I) production and the innate immune response. In this study, we show for the first time the relationship existing in CF between resistant and recurrent opportunistic infections by Pseudomonas aeruginosa and the innate immunity impairment. We demonstrate through ex vivo and in vivo experiments that the pathway is inadequately activated in ΔF condition and the use of direct STING agonists, as 2',3'-cyclic GMP-AMP (2', 3' cGAMP), is able to restore the immune response against bacterial colonization. Indeed, upon treatment with the STING pathway agonists, we found a reduction of colony forming units (CFUs) consequent to IFN-ß enhanced production in Pseudomonas aeruginosa infected bone marrow derived macrophages and lung tissues from mice affected by Cystic Fibrosis. Importantly, we also verified that the impairment detected in the primary PBMCs obtained from ΔF patients can be corrected by 2', 3' cGAMP. Our work indicates that the cGAS/STING pathway integrity is crucial in the Cystic Fibrosis response against pathogens and that the restoration of the pathway by 2', 3' cGAMP could be exploited as a possible new target for the symptomatic treatment of the disease.


Subject(s)
Cystic Fibrosis , Interferon Type I , Mice , Animals , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator , Immunity, Innate/genetics , Interferon Type I/metabolism , Macrophages , Protein Serine-Threonine Kinases/metabolism , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism
8.
Cell Death Dis ; 14(10): 704, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898636

ABSTRACT

Skin cutaneous melanoma (SKCM) is the deadliest form of skin cancer due to its high heterogeneity that drives tumor aggressiveness. Melanoma plasticity consists of two distinct phenotypic states that co-exist in the tumor niche, the proliferative and the invasive, respectively associated with a high and low expression of MITF, the master regulator of melanocyte lineage. However, despite efforts, melanoma research is still far from exhaustively dissecting this phenomenon. Here, we discovered a key function of Transglutaminase Type-2 (TG2) in regulating melanogenesis by modulating MITF transcription factor expression and its transcriptional activity. Importantly, we demonstrated that TG2 expression affects melanoma invasiveness, highlighting its positive value in SKCM. These results suggest that TG2 may have implications in the regulation of the phenotype switching by promoting melanoma differentiation and impairing its metastatic potential. Our findings offer potential perspectives to unravel melanoma vulnerabilities via tuning intra-tumor heterogeneity.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism , Gene Expression Regulation, Neoplastic , Melanocytes/metabolism , Phenotype , Microphthalmia-Associated Transcription Factor/genetics , Cell Line, Tumor , Melanoma, Cutaneous Malignant
9.
Cell Death Discov ; 8(1): 498, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572679

ABSTRACT

cGAS/STING axis is the major executor of cytosolic dsDNA sensing that leads to the production of type I interferon (IFNI) not only upon bacterial infection, but also in cancer cells, upon DNA damage. In fact, DNA damage caused by ionizing radiations and/or topoisomerase inhibitors leads to a release of free DNA into the cytosol, which activates the cGAS/STING pathway and the induction of IFNI expression. Doxorubicin-induced apoptotic cancer cells release damage-associated molecular patterns (DAMPs), including IFNI, which are able to stimulate the immune system. Our results indicate that Transglutaminase type 2 (TG2) is directly involved in the formation of a covalent cross-linked IRF3 (Interferon regulatory factor 3) dimers, thereby limiting the production of IFNI. Indeed, we demonstrated that upon doxorubicin treatment TG2 translocates into the nucleus of apoptotic melanoma cells interacting with IRF3 dimers. Interestingly, we show that both the knockdown of the enzyme as well as the inhibition of its transamidating activity lead to a decrease in the dimerization of IRF3 correlated with an increase in the IFNI mRNA levels. Taken together, these data demonstrate that TG2 negatively regulates the IRF3 pathway in human melanoma cells suggesting a so far unknown TG2-dependent mechanism by which cancer cells reduce the IFNI production after DNA damage to limit the immune system response.

10.
Cell Death Dis ; 12(3): 249, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674551

ABSTRACT

TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress-responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/ß-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with ß-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio. Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis.


Subject(s)
Fibroblasts/enzymology , GTP-Binding Proteins/metabolism , Heat Shock Transcription Factors/metabolism , Transglutaminases/metabolism , Wnt Signaling Pathway , Zebrafish/metabolism , Animals , Cells, Cultured , GTP-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Heat Shock Transcription Factors/genetics , Heat-Shock Response , Mice, Inbred C57BL , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2 , Transcription, Genetic , Transcriptome , Transglutaminases/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
11.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30590033

ABSTRACT

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Subject(s)
Endoplasmic Reticulum/metabolism , GTP-Binding Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Transglutaminases/metabolism , Animals , Calcium/metabolism , Endoplasmic Reticulum/ultrastructure , Fibroblasts/metabolism , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice, Inbred C57BL , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2
SELECTION OF CITATIONS
SEARCH DETAIL