Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Mol Plant Microbe Interact ; 37(4): 370-379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148291

ABSTRACT

Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacterial Proteins , Capsicum , Clavibacter , Nicotiana , Plant Diseases , Nicotiana/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Virulence , Capsicum/microbiology , Clavibacter/genetics , Clavibacter/metabolism , Plant Leaves/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , Amino Acid Sequence
2.
Appl Microbiol Biotechnol ; 108(1): 11, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38159122

ABSTRACT

Pectobacterium spp. are necrotrophic plant pathogens that cause the soft rot disease in Chinese cabbage, resulting in severe yield loss. The use of conventional antimicrobial agents, copper-based bactericides, and antibiotics has encountered several limitations, such as bioaccumulation on plants and microbial resistance. Bacteriophages (phages) are considered promising alternative antimicrobial agents against diverse phytopathogens. In this study, we isolated and characterized two virulent phages (phiPccP-2 and phiPccP-3) to develop a phage cocktail. Morphological and genomic analyses revealed that two phages belonged to the Tevenvirinae and Mccorquodalevirinae subfamilies, respectively. The phiPccP-2 and phiPccP-3 phages, which have a broad host range, were stable at various environmental conditions, such as various pHs and temperatures and exposure to ultraviolet light. The phage cocktail developed using these two lytic phages inhibited the emergence of phage-resistant bacteria compared to single-phage treatments in in vitro challenge assays. The phage cocktail treatment effectively prevented the development of soft rot symptom in matured Chinese cabbage leaves. Additionally, the phage cocktail comprising three phages (phiPccP-1, phiPccP-2, and phiPccP-3) showed superior biocontrol efficacy against the mixture of Pectobacterium strains in Chinese cabbage seedlings. These results suggest that developing phage cocktails is an effective approach for biocontrol of soft rot disease caused by Pectobacterium strains in crops compared to single-phage treatments. KEY POINTS: •Two newly isolated Pectobacterium phages, phiPccP-2 and phiPccP-3, infected diverse Pectobacterium species and effectively inhibited the emergence of phage-resistant bacteria. •Genomic and physiological analyses suggested that both phiPccP-2 and phiPccP-3 are lytic phages and that their lytic activities are stable in the environmental conditions under which Chinese cabbage grows. •Treatment using a phage cocktail comprising phiPccP-2 and phiPccP-3 efficiently suppressed soft rot disease in detached mature leaves and seedlings of Chinese cabbage, indicating the applicability of the phage cocktail as an alternative antimicrobial agent.


Subject(s)
Anti-Infective Agents , Bacteriophages , Brassica , Pectobacterium , Bacteriophages/physiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Bacteria
3.
Breed Sci ; 72(3): 274, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36408324

ABSTRACT

[This corrects the article DOI: 10.1270/jsbbs.20027.].

4.
Breed Sci ; 70(4): 462-473, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968349

ABSTRACT

Bacterial wilt, caused by the Ralstonia pseudosolanacearum species complex, is an important vascular disease that limits tomato production in tropical and subtropical regions. Two major quantitative trait loci (QTL) of bacterial wilt resistance on chromosome 6 (Bwr-6) and 12 (Bwr-12) were previously identified in Solanum lycopersicum 'Hawaii 7996'; however, marker-assisted breeding for bacterial wilt resistance is not well established. To dissect the QTL, six cleaved amplified polymorphic sites (CAPS) and derived CAPS (dCAPS) markers within the Bwr-6 region and one dCAPS marker near Bwr-12 were developed, and resistance levels in 117 tomato cultivars were evaluated. Two markers, RsR6-5 on chromosome 6 and RsR12-1 on chromosome 12, were selected based on the genotypic and phenotypic analysis. The combination of RsR6-5 and RsR12-1 effectively distinguishes resistant and susceptible cultivars. Furthermore, the efficiency of the two markers was validated in the F3 generation derived from the F2 population between E6203 (susceptible) and Hawaii 7998 (resistant). Resistant alleles at both loci led to the resistance to bacterial wilt. These markers will facilitate marker-assisted breeding of tomato resistant to bacterial wilt.

5.
Mol Plant Microbe Interact ; 32(4): 491-501, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30345870

ABSTRACT

Diverse plant pathogens secrete cellulases to degrade plant cell walls. Previously, the plasmid-borne cellulase gene celA was shown to be important for the virulence of the gram-positive bacterium Clavibacter michiganensis in tomato. However, details of the contribution of cellulases to the development of wilting in tomato have not been well-determined. To better understand the contribution of cellulases to the virulence of C. michiganensis in tomato, a mutant lacking cellulase activity was generated and complemented with truncated forms of certain cellulase genes, and virulence of those strain was examined. A celA mutant of the C. michiganensis type strain LMG7333 lost its cellulase activity and almost all its ability to cause wilting in tomato. The cellulase catalytic domain and cellulose-binding domain of CelA together were sufficient for both cellulase activity and the development of wilting in tomato. However, the expansin domain did not affect virulence or cellulase activity. The celA ortholog of Clavibacter sepedonicus restored the full virulence of the celA mutant of C. michiganensis. Another cellulase gene, celB, located in the chromosome, carries a single-base deletion in most C. michiganensis strains but does not carry a functional signal peptide in its N terminus. Nevertheless, an experimentally modified CelB protein with a CelA signal peptide was secreted and able to cause wilting in tomato. These results indicate that cellulases are major virulence factors of C. michiganensis that causes wilting in tomato. Furthermore, there are natural variations among cellulase genes directly affecting their function.


Subject(s)
Actinobacteria , Cellulase , Plant Diseases , Solanum lycopersicum , Actinobacteria/enzymology , Actinobacteria/genetics , Cellulase/genetics , Cellulase/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Protein Sorting Signals/genetics , Protein Sorting Signals/physiology , Virulence/genetics
6.
Mol Plant Microbe Interact ; 32(2): 167-175, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29996678

ABSTRACT

Fire blight, a devastating disease caused by the bacterium Erwinia amylovora, is a major threat to apple crop production. To improve our understanding of the fire blight disease and to identify potential strategies to control the pathogen, we studied the apple protein HIPM (for HrpN-interacting protein from Malus spp.), which has previously been identified as interacting with the E. amylovora effector protein HrpN. Transgenic apple plants were generated with reduced HIPM expression, using an RNA interference construct, and were subsequently analyzed for susceptibility to E. amylovora infection. Lines exhibiting a greater than 50% silencing of HIPM expression showed a significant decrease in susceptibility to E. amylovora infection. Indeed, a correlation between HIPM expression and E. amylovora infection was identified, demonstrating the crucial role of HIPM during fire blight disease progression. Furthermore, an apple oxygen-evolving enhancer-like protein (MdOEE) was identified via a yeast two-hybrid screen to interact with HIPM. This result was confirmed with bimolecular fluorescence complementation assays and leads to new hypotheses concerning the response mechanism of the plant to E. amylovora as well as the mechanism of infection of the bacterium. These results suggest that MdOEE and, particularly, HIPM are promising targets for further investigations toward the genetic improvement of apple.


Subject(s)
Erwinia amylovora , Gene Expression , Malus , Disease Resistance/genetics , Erwinia amylovora/physiology , Malus/genetics , Malus/microbiology , Plant Diseases/genetics
7.
Mol Plant Microbe Interact ; 32(11): 1496-1507, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31251114

ABSTRACT

The molecular mechanisms acting between host recognition of pathogen effectors by nucleotide-binding leucine-rich repeat receptor (NLR) proteins and mitogen-activated protein kinase (MAPK) signaling cascades are unknown. MAPKKKα (M3Kα) activates MAPK signaling leading to programmed cell death (PCD) associated with NLR-triggered immunity. We identified a tomato M3Kα-interacting protein, SlMai1, that has 80% amino acid identity with Arabidopsis brassinosteroid kinase 1 (AtBsk1). SlMai1 has a protein kinase domain and a C-terminal tetratricopeptide repeat domain that interacts with the kinase domain of M3Kα. Virus-induced gene silencing of Mai1 homologs in Nicotiana benthamiana increased susceptibility to Pseudomonas syringae and compromised PCD induced by four NLR proteins. PCD was restored by expression of a synthetic SlMai1 gene that resists silencing. Expression of AtBsk1 did not restore PCD in Mai1-silenced plants, suggesting SlMai1 is functionally divergent from AtBsk1. PCD caused by overexpression of M3Kα or MKK2 was unaffected by Mai1 silencing, suggesting Mai1 acts upstream of these proteins. Coexpression of Mai1 with M3Kα in leaves enhanced MAPK phosphorylation and accelerated PCD. These findings suggest Mai1 is a molecular link acting between host recognition of pathogens and MAPK signaling.


Subject(s)
Host-Pathogen Interactions , Mitogen-Activated Protein Kinases , Plant Diseases , Signal Transduction , Host-Pathogen Interactions/physiology , Solanum lycopersicum/enzymology , Mitogen-Activated Protein Kinases/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Pseudomonas syringae/enzymology , Nicotiana/enzymology
8.
New Phytol ; 217(3): 1177-1189, 2018 02.
Article in English | MEDLINE | ID: mdl-29134663

ABSTRACT

Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1Cmc and 145 kb pCM2Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together.


Subject(s)
Capsicum/microbiology , Genes, Bacterial , Micrococcaceae/genetics , Micrococcaceae/pathogenicity , Plant Diseases/microbiology , Plasmids/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Micrococcaceae/growth & development , Physical Chromosome Mapping , Plant Diseases/genetics , Virulence/genetics
9.
Theor Appl Genet ; 131(5): 1017-1030, 2018 May.
Article in English | MEDLINE | ID: mdl-29352323

ABSTRACT

KEY MESSAGE: Genotyping of disease resistance to bacterial wilt in tomato by a genome-wide SNP analysis Bacterial wilt caused by Ralstonia pseudosolanacearum is one of the destructive diseases in tomato. The previous studies have identified Bwr-6 (chromosome 6) and Bwr-12 (chromosome 12) loci as the major quantitative trait loci (QTLs) contributing to resistance against bacterial wilt in tomato cultivar 'Hawaii7996'. However, the genetic identities of two QTLs have not been uncovered yet. In this study, using whole-genome resequencing, we analyzed genome-wide single-nucleotide polymorphisms (SNPs) that can distinguish a resistant group, including seven tomato varieties resistant to bacterial wilt, from a susceptible group, including two susceptible to the same disease. In total, 5259 non-synonymous SNPs were found between the two groups. Among them, only 265 SNPs were located in the coding DNA sequences, and the majority of these SNPs were located on chromosomes 6 and 12. The genes that both carry SNP(s) and are near Bwr-6 and Bwr-12 were selected. In particular, four genes in chromosome 12 encode putative leucine-rich repeat (LRR) receptor-like proteins. SNPs within these four genes were used to develop SNP markers, and each SNP marker was validated by a high-resolution melting method. Consequently, one SNP marker, including a functional SNP in a gene, Solyc12g009690.1, could efficiently distinguish tomato varieties resistant to bacterial wilt from susceptible varieties. These results indicate that Solyc12g009690.1, the gene encoding a putative LRR receptor-like protein, might be tightly linked to Bwr-12, and the SNP marker developed in this study will be useful for selection of tomato cultivars resistant to bacterial wilt.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Solanum lycopersicum/genetics , Chromosome Mapping , Genes, Plant , Solanum lycopersicum/microbiology , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Ralstonia
10.
Sensors (Basel) ; 17(10)2017 Sep 23.
Article in English | MEDLINE | ID: mdl-28946608

ABSTRACT

The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400-1800 cm-1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm-1 and 437 cm-1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods.


Subject(s)
Citrullus/microbiology , Comamonadaceae/isolation & purification , Food Microbiology/methods , Seeds/microbiology , Spectrum Analysis, Raman , Reproducibility of Results
11.
Molecules ; 22(5)2017 May 08.
Article in English | MEDLINE | ID: mdl-28481314

ABSTRACT

Carotenoids are essential for plant and animal nutrition, and are important factors in the variation of pigmentation in fruits, leaves, and flowers. Tomato is a model crop for studying the biology and biotechnology of fleshy fruits, particularly for understanding carotenoid biosynthesis. In commercial tomato cultivars and germplasms, visual phenotyping of the colors of ripe fruits can be done easily. However, subsequent analysis of metabolic profiling is necessary for hypothesizing genetic factors prior to performing time-consuming genetic analysis. We used high performance liquid chromatography (HPLC), employing a C30 reverse-phase column, to efficiently resolve nine carotenoids and isomers of several carotenoids in yellow, orange, and red colored ripe tomatoes. High content of lycopene was detected in red tomatoes. The orange tomatoes contained three dominant carotenoids, namely δ-carotene, ß-carotene, and prolycopene. The yellow tomatoes showed low levels of carotenoids compared to red or orange tomatoes. Based on the HPLC profiles, genes responsible for overproducing δ-carotene and prolycopene were described as lycopene ε-cyclase and carotenoid isomerase, respectively. Subsequent genetic analysis using DNA markers for segregating population and germplasms were conducted to confirm the hypothesis. This study establishes the usefulness of metabolic profiling for inferring the genetic determinants of fruit color.


Subject(s)
Carotenoids , Fruit , Pigmentation/genetics , Solanum lycopersicum , Carotenoids/biosynthesis , Carotenoids/genetics , Fruit/genetics , Fruit/metabolism , Genetic Markers , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism
12.
J Sci Food Agric ; 97(4): 1084-1092, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27264863

ABSTRACT

BACKGROUND: There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. RESULTS: A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. CONCLUSION: The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry.


Subject(s)
Bacteria/growth & development , Citrullus/microbiology , Food Microbiology/methods , Seeds/microbiology , Spectroscopy, Near-Infrared/methods , Humans
13.
Int J Syst Evol Microbiol ; 66(10): 4065-4070, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27412674

ABSTRACT

Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).


Subject(s)
Capsicum/microbiology , Micrococcaceae/classification , Phylogeny , Plant Diseases/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Micrococcaceae/genetics , Micrococcaceae/isolation & purification , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA
14.
Theor Appl Genet ; 128(7): 1219-29, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25917599

ABSTRACT

KEY MESSAGE: Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.


Subject(s)
Bacteria/pathogenicity , Crops, Agricultural/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Xylem/microbiology , Crops, Agricultural/microbiology , Plant Diseases/microbiology , Quantitative Trait Loci , Virulence
15.
Microbiol Res ; 285: 127743, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733725

ABSTRACT

Clavibacter michiganensis is a Gram-positive bacterium that causes diverse disease symptoms in tomatoes and Nicotiana benthamiana, a surrogate host plant, including canker, blister lesions, and wilting. Previously, we reported that C. michiganensis also causes necrosis in N. benthamiana leaves. Here, to identify novel virulence genes of C. michiganensis required for necrosis development in N. benthamiana leaves, we screened 1,862 transposon-inserted mutants and identified a mutant strain that exhibited weak and delayed necrosis, whereas there was no discernible difference in blister lesions, canker, or wilting symptoms. Notably, this mutant caused canker similar to that of the wild-type strain, but caused mild wilting in tomato. This mutant carried a transposon in a chromosomal gene, called Clavibactervirulence gene A1 (cviA1). CviA1 encodes a 180-amino acid protein with a signal peptide (SP) at the N-terminus and two putative transmembrane domains (TMs) at the C-terminus. Interestingly, deletion of the SP or the C-terminus, including the two putative TMs, in CviA1 failed to restore full necrosis in the mutant, highlighting the importance of protein secretion and the putative TMs for necrosis. A paralog of cviA1, cviA2 is located on the large plasmid pCM2 of C. michiganensis. Despite its high similarity to cviA1, the introduction of cviA2 into the cviA1 mutant strain did not restore virulence. Similarly, the introduction of cviA1 into the Clavibacter capsici type strain PF008, which initially lacks cviA1, did not enhance necrosis symptoms. These results reveals that the chromosomal cviA1 gene in C. michiganensis plays an important role in necrosis development in N. benthamiana leaves.


Subject(s)
DNA Transposable Elements , Nicotiana , Plant Diseases , Plant Leaves , Virulence Factors , Plant Diseases/microbiology , Nicotiana/microbiology , Virulence Factors/genetics , Virulence/genetics , Plant Leaves/microbiology , Bacterial Proteins/genetics , Solanum lycopersicum/microbiology , Clavibacter/genetics , Necrosis , Actinobacteria/genetics , Actinobacteria/pathogenicity , Mutagenesis, Insertional , Genes, Bacterial/genetics
16.
J Agric Food Chem ; 72(4): 2374-2380, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38247141

ABSTRACT

Fire blight is one of the most devastating plant diseases, causing severe social and economic problems. Herein, we report a novel method based on label-free surface-enhanced Raman scattering (SERS) combined with an Erwinia amylovora-specific bacteriophage that allows detecting efficiently fire blight bacteria E. amylovora for the first time. To achieve the highest SERS signals for E. amylovora, we synthesized and compared plasmonic nanoparticles (PNPs) with different sizes, i.e., bimetallic gold core-silver shell nanoparticles (Au@AgNPs) and monometallic gold nanoparticles (AuNPs) and utilized the coffee-ring effect for the self-assembly of PNPs and enrichment of fire blight bacteria. Furthermore, we investigated the changes in the SERS spectra of E. amylovora after incubation with an E. amylovora-specific bacteriophage, and we found considerable differences in the SERS signals as a function of the bacteriophage incubation time. The results indicate that our bacteriophage-based label-free SERS analysis can specifically detect E. amylovora without the need for peak assignment on the SERS spectra but simply by monitoring the changes in the SERS signals over time. Therefore, our facile method holds great potential for the label-free detection of pathogenic bacteria and the investigation of viral-bacterial interactions.


Subject(s)
Bacteriophages , Metal Nanoparticles , Gold , Spectrum Analysis, Raman/methods , Plant Diseases/microbiology
17.
Mol Plant Microbe Interact ; 26(10): 1115-22, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23745678

ABSTRACT

Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Gram-Negative Bacteria/metabolism , Plant Diseases/microbiology , Plants/microbiology , Erwinia/metabolism , Erwinia/pathogenicity , Erwinia/physiology , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacteria/physiology , Host-Pathogen Interactions , Plant Diseases/immunology , Plant Immunity , Plants/immunology , Pseudomonas/metabolism , Pseudomonas/pathogenicity , Pseudomonas/physiology , Virulence , Virulence Factors , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Xanthomonas/physiology
18.
Plant Cell ; 22(1): 260-72, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20061552

ABSTRACT

Programmed cell death (PCD) is triggered when Pto, a Ser-Thr protein kinase, recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv tomato. This PCD requires mitogen-activated protein kinase kinase kinase (MAPKKK alpha ) as a positive regulator in tomato (Solanum lycopersicum) and Nicotiana benthamiana. To examine how PCD-eliciting activity of the tomato MAPKKK alpha protein is regulated, we screened for MAPKKK alpha -interacting proteins in tomato and identified a 14-3-3 protein, TFT7. Virus-induced gene silencing using the TFT7 gene in N. benthamiana compromised both Pto- and MAPKKK alpha -mediated PCD, and coexpression of TFT7 with tomato MAPKKK alpha enhanced MAPKKK alpha -mediated PCD. TFT7 was also required for PCD associated with several other disease resistance proteins and contributed to resistance against P. syringae pv tomato. Coexpression of TFT7 with MAPKKK alpha in vivo caused increased accumulation of the kinase and enhanced phosphorylation of two MAP kinases. TFT7 protein contains a phosphopeptide binding motif that is present in human 14-3-3 epsilon, and substitutions in this motif abolished interaction with MAPKKK alpha in vivo and also the PCD-enhancing activity of TFT7. A 14-3-3 binding motif, including a putative phosphorylated Ser-535, is present in the C-terminal region of MAPKKK alpha. An S535A substitution in MAPKKK alpha reduced interaction with TFT7 and both PCD-eliciting ability and stability of MAPKKK alpha. Our results provide new insights into a role for 14-3-3 proteins in regulating immunity-associated PCD pathways in plants.


Subject(s)
14-3-3 Proteins/metabolism , Apoptosis , MAP Kinase Kinase Kinases/metabolism , Signal Transduction , Solanum lycopersicum/genetics , 14-3-3 Proteins/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant , Gene Silencing , Immunity, Innate , Solanum lycopersicum/enzymology , MAP Kinase Kinase Kinases/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Phylogeny , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Pseudomonas syringae , RNA, Plant/genetics , Sequence Analysis, DNA , Nicotiana/genetics , Nicotiana/metabolism
19.
Plant Cell ; 22(3): 918-36, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20332379

ABSTRACT

Resistance gene-mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene-mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2(DD) was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Endosomes/metabolism , Plant Diseases/genetics , Arabidopsis Proteins/genetics , Calcium/metabolism , Cell Death , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Immunity, Innate , Mutagenesis, Insertional , Mutation , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Diseases/immunology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Pseudomonas syringae/physiology , RNA, Plant/genetics , Nicotiana/genetics , Nicotiana/immunology
20.
iScience ; 26(4): 106557, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37102150

ABSTRACT

Fire blight is a representative plant infection that contaminates edible plants and causes socio-economic problems in agricultural and livestock industries globally. It is caused by the pathogen Erwinia amylovora (E. amylovora) creates lethal plant necrosis and spreads rapidly across plant organs. We newly disclose the fluorogenic probe B-1 for real-time on-site detection of fire blight bacteria for the first time. B-1 exhibited no emission signals but manifested bright emission properties in the presence of fire blight bacteria. Based on these features, fluorescence imaging of the fire blight bacteria and its real-time detection from the infected host plant tissues were conducted. The detection limit against E. amylovora was 102 CFU/mL, which had excellent sensitivity. The fluorogenic probe-based on-site diagnostic technology was supplemented by introducing a new portable UV device. This work holds enormous potential to be a new advanced tool for detecting fire blight in agricultural and livestock industries.

SELECTION OF CITATIONS
SEARCH DETAIL