Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39205107

ABSTRACT

We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) "guard-ring-free" pixel isolation layout, (ii) device characteristics "insensitive" to applied voltage and temperature, and (iii) stable operation subject to intense light exposure. The "guard-ring-free" pixel design is established by resolving the tradeoff relationship between electric field concentration and pixel isolation. The effectiveness of the optimization strategy is validated both by simulation and experiment. To realize insensitivity to voltage and temperature variations, a global feedback resistor is shown to effectively suppress variations in device characteristics such as photon detection efficiency and dark count rate. An in-pixel overflow transistor is also introduced to enhance the resistance to strong illumination. The robustness of the fabricated VAPD-CIS is verified by characterization of 122 different chips and through a high-temperature and intense-light-illumination operation test with 5 chips, conducted at 125 °C for 1000 h subject to 940 nm light exposure equivalent to 10 kLux.

2.
Sensors (Basel) ; 20(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466348

ABSTRACT

We present an analysis of carrier dynamics of the single-photon detection process, i.e., from Geiger mode pulse generation to its quenching, in a single-photon avalanche diode (SPAD). The device is modeled by a parallel circuit of a SPAD and a capacitance representing both space charge accumulation inside the SPAD and parasitic components. The carrier dynamics inside the SPAD is described by time-dependent bipolar-coupled continuity equations (BCE). Numerical solutions of BCE show that the entire process completes within a few hundreds of picoseconds. More importantly, we find that the total amount of charges stored on the series capacitance gives rise to a voltage swing of the internal bias of SPAD twice of the excess bias voltage with respect to the breakdown voltage. This, in turn, gives a design methodology to control precisely generated charges and enables one to use SPADs as conventional photodiodes (PDs) in a four transistor pixel of a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) with short exposure time and without carrier overflow. Such operation is demonstrated by experiments with a 6 µm size 400 × 400 pixels SPAD-based CIS designed with this methodology.

3.
Sensors (Basel) ; 18(1)2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29361742

ABSTRACT

We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations.

SELECTION OF CITATIONS
SEARCH DETAIL