Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol ; 211(5): 862-873, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37466368

ABSTRACT

Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.


Subject(s)
Trypanosoma brucei brucei , Mice , Animals , Humans , Trypanosoma brucei brucei/metabolism , Complement C3b/metabolism , Receptors, Complement 3b , Complement Activation , Complement Factor H/metabolism , Fibrinogen , Complement Pathway, Alternative , Complement C3-C5 Convertases/metabolism
2.
J Immunol ; 205(8): 2287-2300, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32938727

ABSTRACT

The complement system is an intricate cascade of the innate immune system and plays a key role in microbial defense, inflammation, organ development, and tissue regeneration. There is increasing interest in developing complement regulatory and inhibitory agents to treat complement dysfunction. In this study, we describe the nanobody hC3Nb3, which is specific for the C-terminal C345c domain of human and mouse complement component C3/C3b/C3c and potently inhibits C3 cleavage by the alternative pathway. A high-resolution structure of the hC3Nb3-C345c complex explains how the nanobody blocks proconvertase assembly. Surprisingly, although the nanobody does not affect classical pathway-mediated C3 cleavage, hC3Nb3 inhibits classical pathway-driven hemolysis, suggesting that the C-terminal domain of C3b has an important function in classical pathway C5 convertase activity. The hC3Nb3 nanobody binds C3 with low nanomolar affinity in an SDS-resistant complex, and the nanobody is demonstrated to be a powerful reagent for C3 detection in immunohistochemistry and flow cytometry. Overall, the hC3Nb3 nanobody represents a potent inhibitor of both the alternative pathway and the terminal pathway, with possible applications in complement research, diagnostics, and therapeutics.


Subject(s)
Complement C3b/immunology , Complement C5 Convertase, Alternative Pathway/immunology , Complement Pathway, Alternative/immunology , Single-Domain Antibodies/immunology , Animals , HEK293 Cells , Humans , Mice , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL