Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Genet Med ; 25(8): 100885, 2023 08.
Article in English | MEDLINE | ID: mdl-37165955

ABSTRACT

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Subject(s)
Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Epilepsy/genetics , Epilepsy/pathology , Genetic Association Studies , Intellectual Disability/genetics , Phenotype , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics
2.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Article in English | MEDLINE | ID: mdl-35146895

ABSTRACT

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Subject(s)
Epilepsy , Infant, Newborn, Diseases , Intellectual Disability , TRPM Cation Channels , Child , Developmental Disabilities/genetics , Humans , Infant, Newborn , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Mutation, Missense , TRPM Cation Channels/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL