Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792201

ABSTRACT

High-performance electrochromic (EC) and electrofluorochromic (EFC) materials have garnered considerable interest due to their diverse applications in smart windows, optoelectronics, optical displays, military camouflage, etc. While many different EC and EFC polymers have been reported, their preparation often requires multiple steps, and their polymer molecular weights are subjected to batch variation. In this work, we prepared two triphenylamine (TPA)-based and two tetraphenylethylene (TPE)-based derivatives functionalized with terminal styryl groups via direct Suzuki coupling with (4-vinylphenyl)boronic acid and vinylboronic acid pinacol ester. The two novel TPE derivatives exhibited green-yellow aggregation-induced emission (AIE). The EC and EFC properties of pre- and post-thermally treated derivatives spin-coated onto ITO-glass substrates were studied. While all four derivatives showed modest absorption changes with applied voltages up to +2.4 V, retaining a high degree of optical transparency, they exhibited obvious EFC properties with the quenching of blue to yellow fluorescence with IOFF/ON contrast ratios of up to 7.0. The findings therefore demonstrate an elegant approach to preparing optically transparent, heat-induced, cross-linkable styryl-functionalized EFC systems.

2.
Chem Asian J ; 17(18): e202200608, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35866560

ABSTRACT

The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.


Subject(s)
Hydrogels , Polymers , Drug Delivery Systems , Hydrogels/chemistry , Polymers/chemistry , Tissue Engineering
3.
ACS Appl Mater Interfaces ; 13(8): 10524-10536, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33605145

ABSTRACT

This study invents a post-pyrolysis modification approach to render the resulting carbon membrane (CM) competent for organic solvent nanofiltration (OSN). A bitumen coating on a porous stainless-steel disk (PSD) serves as the precursor for the intended carbon membrane (CM), which is attained through pyrolysis in Ar. The bitumen coating casts dual-pore networks in the CM because of the dominant asphaltene constituent in bitumen. The subsequent chemical decoration of CM was pursued through the following protocol: dopamine (DA) was deployed in the nanopores of CM via pressurized infiltration and followed by Tris buffer passes through to trigger in situ conversion of DA to polydopamine (PDA), which was affixed over the pore walls to furnish chemical affinity (termed as CMPDA). Additionally, the catechol moiety of PDA was arranged to chelate with the Zn2+ ion, aiming to trim the -OH anchor (termed as CMPDA-Zn) to probe the effect of chelate on separation. The three membranes (CM, CMPDA, and CMPDA-Zn) were thereafter assessed by the separation of ethanol or isopropanol from phenolics [tannic acid (TA)/tetracycline (TC)]. A significantly improved OSN performance [rejection (%) ↔ permeance (L/(m2·h·bar))] of CM vs CMPDA was observed: (i) for TA feed, 13% ↔ 85 L/(m2·h·bar) vs 83% ↔ 12 L/(m2·h·bar); and (ii) for TC feed, 20% ↔ 78 L/(m2·h·bar) vs 78% ↔ 12 L/(m2·h·bar). Compared to CMPDA, CMPDA-Zn further advances the rejection performance (∼89% for TA and ∼80% for TC) over 50 h separation. They are benchmarked by the latest literature results. The performance enhancements can be attributed to the spreading of PDA or PDA-Zn sites in the dual-pore networks, so that they are able to offer H-bonding and steric blocking roles, a chemicomechanical effect, to seize solute molecules over pore walls. It is this interfacial drag effect that sustains the solute rejection.

SELECTION OF CITATIONS
SEARCH DETAIL