Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Chemistry ; : e202403003, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304519

ABSTRACT

In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination.  While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.

2.
Inorg Chem ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287358

ABSTRACT

Olanzapine is an antipsychotic drug that has been reported to suppress ferroptosis, a recently discovered form of regulated cell death. In this work, the scavenging activity of olanzapine and some of its metabolites is investigated in silico using state-of-the-art density functional theory calculations (level of theory: (SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)). Indeed, this reactivity is linked to the therapeutic activity of many antipsychotic drugs and ferroptosis inhibitors. Furthermore, the distinction between hydrogen atom transfer (HAT) and concerted proton coupled electron transfer (cPCET) is elucidated for the most reactive sites of the studied molecules. Then, a promising experimentally guided anti-ferroptotic cyclic mechanism is proposed for ferrostatin-1, a well-known ferroptosis inhibitor, involving the oxidation of FeII to FeIII, the quenching of hydroperoxyl radicals, and the subsequent regeneration of the reactant (level of theory: M06/6-311+G(d,p),def2TZVP//M06/6-31G(d),LANL2DZ). An analogous cyclic process is investigated for liproxstatin-1 and olanzapine, whose activity has been reported in the literature and compared to ferrostatin-1. Finally, the effect of water solvation is evaluated unveiling that the anti-ferroptotic activity of olanzapine is likely less efficient in polar media.

3.
Inorg Chem ; 63(26): 12063-12072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38874835

ABSTRACT

Notable thermal shifts in diselenides have been documented in 77Se NMR for more than 50 years, but no satisfactory explanation has been found. Here, five hypotheses are considered as possible explanations for the large temperature dependence of the 77Se chemical shifts of diaryl and dialkyl diselenides compared to monoselenides and selenols. Density functional theory calculations are provided to bolster hypotheses and better understand the effects of barrier height and dipole energies. It is proposed that the temperature dependence of diselenide 77Se NMR chemical shifts is due to rotation around the Se-Se bond and sampling of twisted conformers at higher temperatures. The molecular twisting is solvent dependent; here, DMSO-d6 and toluene-d8 were evaluated. No correlation was established between para-substituents on diaryl diselenides and the magnitude of the change in the 77Se NMR shift (Δδ) with temperature.

4.
Inorg Chem ; 63(4): 1745-1758, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38230993

ABSTRACT

A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.


Subject(s)
Cyclams , Lead , Humans , Precision Medicine , Chelating Agents/chemistry , Ligands
5.
Inorg Chem ; 62(42): 17288-17298, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37769326

ABSTRACT

PhSeZnCl, which is also known as Santi's reagent, can catalyze the reduction of hydrogen peroxide by thiols with a GPx-like mechanism. In this work, the first step of this catalytic cycle, i.e., the reduction of H2O2 by PhSeZnCl, is investigated in silico using state-of-the-art density functional theory calculations. Then, the role of the metal is evaluated by replacing Zn with its group 12 siblings (Cd and Hg). The thermodynamic and kinetic factors favoring Zn are elucidated. Furthermore, the role of the halogen is considered by replacing Cl with Br in all three metal compounds, and this turns out to be negligible. Finally, the overall GPx-like mechanism of PhSeZnCl and PhSeZnBr is discussed by evaluating the energetics of the mechanistic path leading to the disulfide product.

6.
Inorg Chem ; 62(50): 20777-20790, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37768780

ABSTRACT

Silver-111 is an attractive unconventional candidate for targeted cancer therapy as well as for single photon emission computed tomography and can be complemented by silver-103 for positron emission tomography noninvasive diagnostic procedures. However, the shortage of chelating agents capable of forming stable complexes tethered to tumor-seeking vectors has hindered their in vivo application so far. In this study, a comparative investigation of a series of sulfur-containing structural homologues, namely, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetraazacyclotetradecane (TE4S) was conducted to appraise the influence of different polyazamacrocyclic backbones on Ag+ complexation. The performances of these macrocycles were also compared with those of the previously reported Ag+/[111Ag]Ag+-chelator 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S). Nuclear magnetic resonance data supported by density functional theory calculations and X-ray crystallographic results gave insights into the coordination environment of these complexes, suggesting that all of the donor atoms are generally involved in the metal coordination. However, the modifications of the macrocycle topology alter the dynamic binding of the pendant arms or the conformation of the ring around the metal center. Combined pH/pAg-potentiometric and spectroscopic experiments revealed that the 12-member N4 backbone of DO4S forms the most stable Ag+ complex while both the enlargement and the shrinkage of the macrocyclic frame dwindle the stability of the complexes. Radiolabeling experiments, conducted with reactor-produced [111Ag]Ag+, evidenced that the thermodynamic stability trend is reflected in the ligand's ability to incorporate the radioactive ion at high molar activity, even in the presence of a competing cation (Pd2+), as well as in the integrity of the corresponding complexes in human serum. As a consequence, DO4S proved to be the most favorable candidate for future in vivo applications.


Subject(s)
Chelating Agents , Silver , Humans , Chelating Agents/chemistry , Silver/chemistry , Precision Medicine , Radioisotopes , Magnetic Resonance Spectroscopy
7.
J Chem Inf Model ; 63(7): 2226-2239, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36952618

ABSTRACT

The SARS-CoV-2 pandemic has prompted global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro) and the papain-like protease (PLpro) are essential for viral replication and are key targets for therapeutic development. In this work, we investigate the mechanisms of SARS-CoV-2 inhibition by diphenyl diselenide (PhSe)2 which is an archetypal model of diselenides and a renowned potential therapeutic agent. The in vitro inhibitory concentration of (PhSe)2 against SARS-CoV-2 in Vero E6 cells falls in the low micromolar range. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations [level of theory: SMD-B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ] are used to inspect non-covalent inhibition modes of both proteases via π-stacking and the mechanism of covalent (PhSe)2 + Mpro product formation involving the catalytic residue C145, respectively. The in vitro CC50 (24.61 µM) and EC50 (2.39 µM) data indicate that (PhSe)2 is a good inhibitor of the SARS-CoV-2 virus replication in a cell culture model. The in silico findings indicate potential mechanisms of proteases' inhibition by (PhSe)2; in particular, the results of the covalent inhibition here discussed for Mpro, whose thermodynamics is approximatively isoergonic, prompt further investigation in the design of antiviral organodiselenides.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Papain , Peptide Hydrolases , Cysteine Endopeptidases/chemistry , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
8.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175462

ABSTRACT

Sulfoxides and selenoxides oxidize thiols to disulfides while being reduced back to sulfides and selenides. While the reduction mechanism of sulfoxides to sulfides has been thoroughly explored experimentally as well as computationally, less attention has been devoted to the heavier selenoxides. In this work, we explore the reductive mechanism of dimethyl selenoxide, as an archetypal selenoxide and, for the sake of comparison, the reductive mechanism of dimethyl sulfoxide to gain insight into the role of the chalcogen on the reaction substrate. Particular attention is devoted to the key role of sulfurane and selenurane intermediates. Moreover, the capacity of these system to oxidize selenols rather than thiols, leading to the formation of selenyl sulfide bridges, is explored in silico. Notably, this analysis provides molecular insight into the role of selenocysteine in methionine sulfoxide reductase selenoenzyme. The activation strain model of chemical reactivity is employed in the studied reactions as an intuitive tool to bridge the computationally predicted effect of the chalcogen on the chalcogenoxide as well as on the chalcogenol.


Subject(s)
Chalcogens , Sulfoxides , Sulfoxides/chemistry , Sulfhydryl Compounds/chemistry , Sulfides , Oxidation-Reduction
9.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511560

ABSTRACT

We set up an in silico experiment and designed a chimeric compound integrating molecular features from different efficient ROS (Reactive Oxygen Species) scavengers, with the purpose of investigating potential relationships between molecular structure and antioxidant activity. Furthermore, a selenium centre was inserted due to its known capacity to reduce hydroperoxides, acting as a molecular mimic of glutathione peroxidase; finally, since this organoselenide is a precursor of a N-heterocyclic carbene ligand, its Au(I) carbene complex was designed and examined. A validated protocol based on DFT (Density Functional Theory) was employed to investigate the radical scavenging activity of available sites on the organoselenide precursor ((SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)), as well as on the organometallic complex ((SMD)-M06-2X/SDD (Au), 6-311+G(d,p)//ZORA-BLYP-D3(BJ)/TZ2P), considering HAT (Hydrogen Atom Transfer) and RAF (Radical Adduct Formation) regarding five different radicals. The results of this case study suggest that the antioxidant potential of chemical motifs should not be considered as an additive property when designing a chimeric compound, but rather that the relevance of a molecular topology is derived from a chemical motif combined with an opportune chemical space of the molecule. Thus, the direct contributions of single functional groups which are generally thought of as antioxidants per se do not guarantee the efficient radical scavenging potential of a molecular species.


Subject(s)
Antioxidants , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Selenium/chemistry , Ligands , Reactive Oxygen Species
10.
J Org Chem ; 87(17): 11766-11775, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35951408

ABSTRACT

The selenoxide elimination is a well-known reaction in organochalcogen chemistry, with wide synthetic, biological, and toxicological implications. In this work, we apply benchmarked density functional theory (DFT) calculations to investigate different aspects of the title reaction in three (bio)chemically relevant models, spanning minimal systems of theoretical interests as well as biological or synthetic organochalcogenides. The activation strain analysis (ASA) methodology is employed along a suitable reaction coordinate to obtain insight into the role of the chalcogen and of the oxidation state, to pinpoint the factors that tune the elimination reactivity of the investigated systems. Lastly, we computationally validate the hypothesis that telluroxides eliminate more slowly than selenoxides because of a detrimental hydration process that leads to unreactive hydrates.


Subject(s)
Oxidation-Reduction
11.
Phys Chem Chem Phys ; 24(12): 7474-7480, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274635

ABSTRACT

We estimate the kinetic constants of a series of archetypal SN2 reactions, i.e., the nucleophilic substitutions of halides in halomethane. A parameter free, multiscale approach recently developed [Campeggio et al., Phys. Chem. Chem. Phys., 2020, 22, 3455] is employed. The protocol relies on quantum mechanical calculations for the description of the energy profile along the intrinsic reaction coordinate, which is then mapped onto a reaction coordinate conveniently built for the reactive process. A Kramers-Klein equation is used to describe the stochastic time evolution of the reaction coordinate and its velocity; friction is parameterized using a hydrodynamic model and Kramers theory is used to derive the rate constant of the reaction. The method is here applied to six SN2 reactions in water at 295.15 K, which differ in the nucleophile and the leaving group. The computed reaction rates are in good agreement with the experimental data and correlate well with the trends observed for the activation energies.

12.
Molecules ; 27(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807388

ABSTRACT

Health is a fundamental human right and is a global goal to which extensive research effort is devoted in all fields [...].

13.
Chem Res Toxicol ; 34(6): 1655-1663, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34077192

ABSTRACT

Experimental studies have indicated that electrophilic mercury forms (e.g., methylmercury, MeHg+) can accelerate the breakage of selenocysteine in vitro. Particularly, in 2009, Khan et al. (Environ. Toxicol. Chem. 2009, 28, 1567-1577) proposed a mechanism for the degradation of a free methylmercury selenocysteinate complex that was theoretically supported by Asaduzzaman et al. (Inorg. Chem. 2010, 50, 2366-2372). However, little is known about the fate of methylmercury selenocysteinate complexes embedded in an enzyme, especially in conditions of oxidative stress in which methylmercury target enzymes operate. Here, an accurate computational study on molecular models (level of theory: COSMO-ZORA-BLYP-D3(BJ)/TZ2P) was carried out to investigate the formation of dehydroalanine (Dha) in selenoenzymes, which irreversibly impairs their function. Methylselenocysteine as well as methylcysteine and methyltellurocysteine were included to gain insight on the peculiar behavior of selenium. Dha forms in a two-step process, i.e., the oxidation of the chalcogen nucleus followed by a syn-elimination leading to the alkene and the chalcogenic acid. The effect of an excess of hydrogen peroxide, which may lead to the formation of chalcogenones before the elimination, and of MeHg+, a severe toxicant targeting selenoproteins, which leads to the formation of methylmercury selenocysteinate, are also studied with the aim of assessing whether these pathological conditions facilitate the formation of Dha. Indeed, elimination occurs after chalcogen oxidation and MeHg+ facilitates the process. These results indicate a possible mechanism of toxicity of MeHg+ in selenoproteins.


Subject(s)
Alanine/analogs & derivatives , Density Functional Theory , Methylmercury Compounds/metabolism , Selenoproteins/metabolism , Alanine/biosynthesis , Alanine/chemistry , Methylmercury Compounds/chemistry , Models, Molecular , Molecular Structure
14.
Inorg Chem ; 60(7): 4646-4656, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33587617

ABSTRACT

Methylmercury (CH3Hg+) binding to catalytically fundamental cysteine and selenocysteine of peroxide-reducing enzymes has long been postulated as the origin of its toxicological activity. Only very recently, CH3Hg+ binding to the selenocysteine of thioredoxin reductase has been directly observed [Pickering, I. J. Inorg. Chem., 2020, 59, 2711-2718], but the precise influence of the toxicant on the peroxide-reducing potential of such a residue has never been investigated. In this work, we employ state-of-the-art density functional theory calculations to study the reactivity of molecular models of the free and toxified enzymes. Trends in activation energies are discussed with attention to the biological consequences and are rationalized within the chemically intuitive framework provided by the activation strain model. With respect to the free, protonated amino acids, CH3Hg+ binding promotes oxidation of the S or Se nucleus, suggesting that chalcogenoxide formation might occur in the toxified enzyme, even if the actual rate of peroxide reduction is almost certainly lowered as suggested by comparison with fully deprotonated amino acids models.


Subject(s)
Cysteine/chemistry , Methylmercury Compounds/chemistry , Peroxides/chemistry , Binding Sites , Cysteine/analogs & derivatives , Density Functional Theory , Molecular Structure , Oxidation-Reduction
15.
Inorg Chem ; 60(15): 11530-11547, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34279088

ABSTRACT

The Cu2+ complexes formed by a series of cyclen derivatives bearing sulfur pendant arms, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis[2-(methylsulfanyl)ethyl]-4,10-diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S), were studied in aqueous solution at 25 °C from thermodynamic and structural points of view to evaluate their potential as chelators for copper radioisotopes. UV-vis spectrophotometric out-of-cell titrations under strongly acidic conditions, direct in-cell UV-vis titrations, potentiometric measurements at pH >4, and spectrophotometric Ag+-Cu2+ competition experiments were performed to evaluate the stoichiometry and stability constants of the Cu2+ complexes. A highly stable 1:1 metal-to-ligand complex (CuL) was found in solution at all pH values for all chelators, and for DO2A2S, protonated species were also detected under acidic conditions. The structures of the Cu2+ complexes in aqueous solution were investigated by UV-vis and electron paramagnetic resonance (EPR), and the results were supported by relativistic density functional theory (DFT) calculations. Isomers were detected that differed from their coordination modes. Crystals of [Cu(DO4S)(NO3)]·NO3 and [Cu(DO2A2S)] suitable for X-ray diffraction were obtained. Cyclic voltammetry (CV) experiments highlighted the remarkable stability of the copper complexes with reference to dissociation upon reduction from Cu2+ to Cu+ on the CV time scale. The Cu+ complexes were generated in situ by electrolysis and examined by NMR spectroscopy. DFT calculations gave further structural insights. These results demonstrate that the investigated sulfur-containing chelators are promising candidates for application in copper-based radiopharmaceuticals. In this connection, the high stability of both Cu2+ and Cu+ complexes can represent a key parameter for avoiding in vivo demetalation after bioinduced reduction to Cu+, often observed for other well-known chelators that can stabilize only Cu2+.


Subject(s)
Coordination Complexes/chemistry , Copper Radioisotopes/analysis , Copper/chemistry , Cyclams/chemistry , Sulfur/chemistry , Copper Radioisotopes/chemistry , Density Functional Theory , Models, Molecular , Molecular Conformation , Oxidation-Reduction
16.
Molecules ; 26(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066723

ABSTRACT

We discuss a novel selenium-based reaction mechanism consisting in a selenoxide elimination-triggered enamine hydrolysis. This one-pot model reaction was studied for a set of substrates. Under oxidative conditions, we observed and characterized the formation of primary and secondary amines as elimination products of such compounds, paving the way for a novel strategy to selectively release bioactive molecules. The underlying mechanism was investigated using NMR, mass spectrometry and density functional theory (DFT).

17.
J Comput Chem ; 41(23): 2045-2054, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32656797

ABSTRACT

Methylmercury is a highly toxic compound and human exposure is mainly related to consumption of polluted fish and seafood. The inactivation of thiol-based enzymes, promoted by the strong affinity binding of electrophilic mercuric ions to thiol and selenol groups of proteins, is likely an important factor explaining its toxicity. A key role is played by the chemistry and reactivity of the mercury-chalcogens bond, particularly HgS and HgSe, which is the focus of this computational work (level of theory: (COSMO)-ZORA-BLYP-D3(BJ)/TZ2P). We analyze nine ligand-exchange model reactions (the so-called Rabenstein's reactions) involving an entering ligand (methylchalcogenolate) and a substrate (methylchalcogenolatemethylmercury). Trends in reaction and activation energies are discussed and a change in mechanism is reported for all cases when going from gas phase to water, that is, from a single-well potential energy surface (PES) to a canonical SN 2-like mechanism. The reasons accounting for the biochemically challenging and desired displacement of methylmercury from a seleno/thiol protein can be found already in these model reactions, as can be seen from the similarities of the ligand exchange reactions in solution in thermodynamics and kinetics.


Subject(s)
Chalcogens/chemistry , Computational Chemistry , Methylmercury Compounds/chemistry , Models, Chemical , Density Functional Theory , Kinetics , Molecular Conformation , Thermodynamics
18.
Inorg Chem ; 59(15): 10907-10919, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32658468

ABSTRACT

With a half-life of 7.45 days, silver-111 (ßmax 1.04 MeV, Eγ 245.4 keV [Iγ 1.24%], Eγ 342.1 keV [Iγ 6.7%]) is a promising candidate for targeted cancer therapy with ß- emitters as well as for associated SPECT imaging. For its clinical use, the development of suitable ligands that form sufficiently stable Ag+-complexes in vivo is required. In this work, the following sulfur-containing derivatives of tetraazacyclododecane (cyclen) have been considered as potential chelators for silver-111: 1,4,7,10-tetrakis(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO4S), (2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-tetrakis(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO4S4Me), 1,4,7-tris(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris(2-(methylsulfanyl)ethyl)-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis(2-(methylsulfanyl)ethyl)-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). Natural Ag+ was used in pH/Ag-potentiometric and UV-vis spectrophotometric studies to determine the metal speciation existing in aqueous NaNO3 0.15 M at 25 °C and the equilibrium constants of the complexes, whereas NMR and DFT calculations gave structural insights. Overall results indicated that sulfide pendant arms coordinate Ag+ allowing the formation of very stable complexes, both at acidic and physiological pH. Furthermore, radiolabeling, stability in saline phosphate buffer, and metal-competition experiments using the two ligands forming the strongest complexes, DO4S and DO4S4Me, were carried out with [111Ag]Ag+ and promising results were obtained.


Subject(s)
Coordination Complexes/chemistry , Cyclams/chemistry , Radiopharmaceuticals/chemistry , Silver/chemistry , Sulfides/chemistry , Density Functional Theory , Hydrogen-Ion Concentration , Ligands , Molecular Structure , Thermodynamics
19.
Phys Chem Chem Phys ; 22(6): 3455-3465, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31984980

ABSTRACT

We propose an approach to the evaluation of kinetic rates of elementary chemical reactions within Kramers' theory based on the definition of the reaction coordinate as a linear combination of natural, pseudo Z-matrix, internal coordinates of the system. The element of novelty is the possibility to evaluate the friction along the reaction coordinate, within a hydrodynamic framework developed recently [J. Campeggio et al., J. Comput. Chem. 2019, 40, 679-705]. This, in turn, allows to keep into account barrier recrossing, i.e. the transmission coefficient that is employed in correcting transition state theory evaluations. To test the capabilities and the flaws of the approach we use as case studies two archetypal SN2 reactions. First, we consider to the standard substitution of chloride ion to bromomethane. The rate constant at 295.15 K is evaluated to k/c⊖ = 2.7 × 10-6 s-1 (with c⊖ = 1 M), which compares well to the experimental value of 3.3 × 10-6 s-1 [R. H. Bathgate and E. A. Melwyn-Hughes, J. Chem. Soc 1959, 2642-2648]. Then, the method is applied to the SN2 reaction of methylthiolate to dimethyl disulfide in water. In biology, such an interconversion of thiols and disulfides is an important metabolic topic still not entirely rationalized. The predicted rate constant is k/c⊖ = 7.7 × 103 s-1. No experimental data is available for such a reaction, but it is in accord with the fact that the alkyl thiolates to dialkyl disulfides substitutions in water have been found to be fast reactions [S. M. Bachrach, J. M. Hayes, T. Dao and J. L. Mynar, Theor. Chem. Acc. 2002, 107, 266-271].

20.
J Chem Phys ; 153(11): 114117, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32962380

ABSTRACT

Many natural substances and drugs are radical scavengers that prevent the oxidative damage to fundamental cell components. This process may occur via different mechanisms, among which, one of the most important, is hydrogen atom transfer. The feasibility of this process can be assessed in silico using quantum mechanics to compute ΔGHAT ○. This approach is accurate, but time consuming. The use of machine learning (ML) allows us to reduce tremendously the computational cost of the assessment of the scavenging properties of a potential antioxidant, almost without affecting the quality of the results. However, in many ML implementations, the description of the relevant features of a molecule in a machine-friendly language is still the most challenging aspect. In this work, we present a newly developed machine-readable molecular representation aimed at the application of automatized ML algorithms. In particular, we show an application on the calculation of ΔGHAT ○.


Subject(s)
Antioxidants/chemistry , Free Radical Scavengers/chemistry , Machine Learning , Models, Chemical , Quantum Theory , Antioxidants/metabolism , Antioxidants/pharmacology , Fluoxetine/analogs & derivatives , Fluoxetine/chemistry , Fluoxetine/pharmacology , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL