Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
2.
J Environ Qual ; 35(4): 1470-7, 2006.
Article in English | MEDLINE | ID: mdl-16825467

ABSTRACT

Elevated atmospheric CO2 can result in larger plants returning greater amounts of residue to the soil. However, the effects of elevated CO2 on carbon (C) and nitrogen (N) cycling for different soybean varieties have not been examined. Aboveground residue of eight soybean [Glycine max (L.) Merr.] varieties was collected from a field study where crops had been grown under two different atmospheric CO2 levels [370 micromol mol(-1) (ambient) and 550 micromol mol(-1) (free-air carbon dioxide enrichment, FACE)]. Senesced residue material was used in a 60-d laboratory incubation study to evaluate potential C and N mineralization. In addition to assessing the overall effects of CO2 level and variety, a few specific variety comparisons were also made. Across varieties, overall residue N concentration was increased by FACE, but residue C concentration was only slightly increased. Overall residue C to N ratio was lower under FACE and total mineralized N was increased by FACE, suggesting that increased N2 fixation impacted residue decomposition; total mineralized C was also slightly increased by FACE. Across CO2 levels, varietal differences were also observed with the oldest variety having the lowest residue N concentration and highest residue C to N ratio; mineralized N was lowest in the oldest variety, illustrating the influence of high residue C to N ratio. It appears (based on our few specific varietal comparisons) that the breeding selection process may have resulted in some varietal differences in residue quality which can result in increased N or C mineralization under elevated CO2 conditions. This limited number of varietal comparisons indicated that more work investigating varietal influences on soil C and N cycling under elevated CO2 conditions is required.


Subject(s)
Atmosphere/analysis , Carbon Dioxide/metabolism , Ecosystem , Glycine max/metabolism , Soil/analysis , Agriculture , Carbon/analysis , Carbon/metabolism , Carbon Dioxide/analysis , Metals/analysis , Metals/metabolism , Minerals/analysis , Minerals/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism
3.
Trends Plant Sci ; 6(1): 36-42, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11164376

ABSTRACT

Photosynthesis in warm-climate plants is substantially reduced after chilling. Tropical and subtropical species offer the opportunity to study the effects of low temperature on photosynthetic processes undisguised by the myriad of protective responses observed in temperate species. In this article, we highlight the primary components of photosynthesis that are affected by a short chill, in both the dark and the light, and discuss what is known of the mechanisms involved. Recent work implicates impaired redox and circadian regulation among other processes.


Subject(s)
Photosynthesis , Plant Physiological Phenomena , Temperature , Carbohydrate Metabolism , Electron Transport , Intracellular Membranes/metabolism
4.
Biochim Biophys Acta ; 460(1): 101-12, 1977 Apr 11.
Article in English | MEDLINE | ID: mdl-851529

ABSTRACT

1. Spinach chloroplasts, pre-incubated with ferricyanide, acquire the ability to make ATP in the dark provided they are supplied with a reductant and a lipophilic mediator that can penetrate the membrane. The mediator must be of the type that, upon oxidation, releases protons into the surrounding medium such as 2,3,5,6-tetramethyl-p-phenylenediamine (DAD). 2. Dark phosphorylation is not affected by the electron transport inhibitor, 3(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), but is inhibited by uncouplers of photophosphorylation (e.g. NH4Cl and carbonylcyanide-m-chlorophenylhydrazone (CCCP)) and high concentrations of the energy transfer inhibitor, Dio-9. 3. Because only catalytic amounts of the mediator DAD are required to saturate dark phosphorylation, it is concluded that DAD shuttles reducing equivalents across the membrane from the reductant, ascorbate, on the outside to ferricyanide, the oxidant, trapped on the inside. 4. The results are interpreted within the framework of the chemiosmotic hypothesis for the coupling of electron transport to phosphorylation.


Subject(s)
Chloroplasts/metabolism , Oxidative Phosphorylation , Adenosine Triphosphate/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Chloroplasts/drug effects , Darkness , Diuron/pharmacology , Kinetics , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Phenylenediamines/pharmacology , Plants , Quinones/pharmacology
5.
Biochim Biophys Acta ; 449(1): 95-107, 1976 Oct 13.
Article in English | MEDLINE | ID: mdl-61766

ABSTRACT

(1) Very brief periods of illumination do not initiate photophosphorylation in isolated chloroplast lamellae. The time of illumination required before any phosphorylation can be detected is inversely proportional to the light intensity. At very high intensities, phosphorylation is initiated after illumination for about 4 ms. (2) There is no similar delay in the initiation of electron transport. The rate of electron transport is very high at first but declines at about the time the capacity for ATP synthesis develops. When the chloroplasts are uncoupled with gramicidin the high initial rate persists. (3) Various ions which permeate the thylakoid membrane (K+ or Rb+ in the presence of valinomycin, SCN-, I-, or C1O4-) markedly increase the time of illumination required to initiate phosphorylation. Potassium ions in the presence of valinomycin increase the delay to a maximum of about 50 ms whereas thiocyanate ions increase the delay to a maximum of about 25 ms. The effects of K+ with valinomycin and the effect of SCN- are not additive. Permeant ions and combinations of permeant ions have little or no effect on phosphorylation during continuous illumination. (4) The reason for the threshold in the light requirement and the reason for the effect of permeant ions thereon are both obscure. However, it could be argued that the energy for phosphorylation initially resides in an electric potential gradient which is abolished by migration of ions in the field, leaving a more slowly developing proton concentration gradient as the main driving force for phosphorylation during continuous illumination. If so, the threshold in the presence of permeant ions should depend on internal hydrogen ion buffering.


Subject(s)
Adenosine Triphosphate/biosynthesis , Anions , Light , Photophosphorylation/radiation effects , Potassium/pharmacology , Rubidium/pharmacology , Chlorides/pharmacology , Chloroplasts/metabolism , Electron Transport , Ferricyanides/metabolism , Gramicidin/pharmacology , Iodides/pharmacology , Perchlorates/pharmacology , Sodium/pharmacology , Thiocyanates/pharmacology , Time Factors , Valinomycin/pharmacology , Water/metabolism
6.
Biochim Biophys Acta ; 449(1): 108-24, 1976 Oct 13.
Article in English | MEDLINE | ID: mdl-10008

ABSTRACT

(1) The amounts of orthophosphate, bicarbonate and tris (hydroxymethyl)-aminomethane found inside the thylakoid are almost exactly the amounts predicted by assuming that the buffers equilibrate across the membrane. Since imidazole and pyridine delay the development of post-illumination ATP formation while increasing the maximum amount of ATP formed, it follows that such relatively permeant buffers must also enter the inner aqueous space of the thylakoid. (2) Photophosphorylation begins abruptly at full steady-state efficiency and full steady-state rate as soon as the illumination time exceeds about 5 ms when permeant ions are absent or as soon as the time exceeds about 50 ms if valinomycin and KC1 are present. In either case, permeant buffers have little or no effect on the time of illumination required to initiate phosphorylation. A concentration of bicarbonate which would delay acidification of the bulk of the inner aqueous phase for at least 350 ms has no effect at all on the time of initiation of phosphorylation. In somewhat swollen chloroplasts, the combined buffering by the tris(hydroxymethyl) aminomethane and orthophosphate inside would delay acidification of the inside by 1500 ms but, even in the presence of valinomycin and KC1, the total delay in the initiation of phosphorylation is then only 65 ms. Similar discrepancies occur with all of the other buffers mentioned. (3) Since these discrepancies between internal acidification and phosphorylation are found in the presence of saturating amounts of valinomycin and KC1, it seems that photophosphorylation can occur when there are no proton concentration gradients and no electrical potential differences across the membranes which separate the medium from the greater part of the internal aqueous phase. (4) We suggest that the protons produced by electron transport may be used directly for phosphorylation without even entering the bulk of the inner aqueous phase of the lamellar system. If so, phosphorylation could proceed long before the internal pH reflected the proton activity gradients within the membrane.


Subject(s)
Adenosine Triphosphate/biosynthesis , Bicarbonates/pharmacology , Light , Phosphates/pharmacology , Photophosphorylation/radiation effects , Tromethamine/pharmacology , Buffers , Chloroplasts/drug effects , Chloroplasts/metabolism , Electron Transport , Glycine/analogs & derivatives , Glycine/pharmacology , Hydrogen-Ion Concentration , Imidazoles/pharmacology , Membranes/metabolism , Osmolar Concentration , Potassium Chloride/pharmacology , Pyridines/pharmacology , Time Factors , Valinomycin/pharmacology
7.
Plant Physiol ; 113(4): 1167-1175, 1997 Apr.
Article in English | MEDLINE | ID: mdl-12223667

ABSTRACT

Sucrose phosphate synthase (SPS), a key enzyme in sucrose biosynthesis, is regulated by protein phosphorylation and shows a circadian pattern of activity in tomato. SPS is most active in its dephosphorylated state, which normally coincides with daytime. Applying okadaic acid, a potent protein phosphatase inhibitor, prevents SPS activation. More interesting is that a brief treatment with cycloheximide, a cytoplasmic translation inhibitor, also prevents the light activation of SPS without any effect on the amount of SPS protein. Cordycepin, an inhibitor of transcript synthesis and processing, has the same effect. Both of these inhibitors also prevent the activation phase of the circadian rhythm in SPS activity. Conversely, cycloheximide and cordycepin do not prevent the decline in circadian SPS activity that normally occurs at night. These observations indicate that SPS phosphatase activity but not SPS kinase activity is controlled, directly or indirectly, at the level of gene expression. Taken together, these data imply that there is a circadian rhythm controlling the transcription of a protein phosphatase that subsequently dictates the circadian rhythm in SPS activity via effects on this enzyme's phosphorylation state.

8.
Plant Physiol ; 107(2): 585-591, 1995 Feb.
Article in English | MEDLINE | ID: mdl-12228384

ABSTRACT

Photosynthesis rate, ribulsoe-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation state, and ribulose bisphosphate concentration were reduced after exposing tomato (Lycopersicon esculentum Mill.) plants to light at 4[deg]C for 6 h. Analysis of lysed and reconsituted chloroplasts showed that activity of the thylakoid membrane was inhibited and that Rubisco, Rubisco activase, and other soluble factors were not affected. Leaf photosynthesis rates and the ability of chilled thylakoid membranes to promote Rubisco activation recovered after 24 h at 25[deg]C. Thylakoid membranes from control tomato plants were as effective as spinach thylakoids in activating spinach Rubisco in the presence of spinach Rubisco activase. This observation is in sharp contrast to the poor ability of spinach Rubisco activase to activate tomato Rubisco (Z.-Y. Wang, G.W. Snyder, B.D. Esau, A.R. Portis, and W.L. Ogren [1992] Plant Physiol 100: 1858-1862). The ability of thylakoids from chilled tomato plants to activate Rubisco in the assay system was greatly inhibited compared to control plants. These experiments indicate that chilling tomato plants at 4[deg]C interferes with photosynthetic carbon metabolism at two sites, thioredoxin/ferredoxin reduction (G.F. Sassenrath, D.R. Ort, and A.R. Portis, Jr. [1990] Arch Biochem Biophys 282: 302-308), which limits bisphosphatase activity, and Rubisco activase, which reduces Rubisco activation state.

9.
Plant Physiol ; 104(2): 769-776, 1994 Feb.
Article in English | MEDLINE | ID: mdl-12232125

ABSTRACT

We have devised a two-step screening strategy for the selection of chloroplast coupling factor reduction mutants from an M2 population of Arabidopsis thaliana. The selection strategy relies on a lowered energetic threshold for catalytic activation of the enzyme that has been shown to accompany thioredoxin-mediated reduction of a cysteine bridge on the [gamma] subunit of coupling factor. We selected first for plants that grew poorly under low irradiance but performed satisfactorily at high irradiance when the transmembrane electrochemical potential of hydrogen ions is large and competent to maintain a high level of coupling factor activation without [gamma] subunit reduction. In the second step of the screen we monitored the flash-induced electrochromic change to select putative coupling factor reduction mutants from other sorts of mutations that shared the phenotype of poor growth and vigor when transferred from high to low irradiance. Among the mutants selected, one appears incapable of reducing coupling factor, whereas another behaves as though coupling factor is at least partially reduced even in dark-adapted plants.

10.
Plant Physiol ; 108(2): 761-767, 1995 Jun.
Article in English | MEDLINE | ID: mdl-12228508

ABSTRACT

The photosynthetic productivity of maize (Zea mays) in temperate regions is often limited by low temperatures. The factors responsible for the sensitivity of photosynthesis in maize to growth at suboptimal temperature were investigated by measuring (a) the quantum yields of CO2 fixation and photosystem II (PSII) photochemistry, (b) the pigments of the xanthophyll cycle, (c) the concentrations of active and inactive PSII reaction centers, and (d) the synthesis of core components of PSII reaction centers. Measurements were made on fully expanded leaves grown at 14[deg]C, both before and during the first 48 h after transfer of these plants to 25[deg]C. Our findings indicate that zeaxanthin-related quenching of absorbed excitation energy at PSII is, quantitatively, the most important factor determining the depressed photosynthetic efficiency in 14[deg]C-grown plants. Despite the photoprotection afforded by zeaxanthin-related quenching of absorbed excitation energy, a significant and more persistent depression of photosynthetic efficiency appears to result from low temperature-induced inhibition of the rate at which damaged PSII centers can be replaced.

17.
Photosynth Res ; 43(2): 93-105, 1995 Feb.
Article in English | MEDLINE | ID: mdl-24306742

ABSTRACT

The potential involvement of impaired photophosphorylation in the chilling sensitivity of photosynthesis in warm climate plant species has been a topic of investigation for more than two decades. With recent advances in the analysis of photosynthetic energy transduction in intact leaves, experiments are now possible that either address or avoid important uncertainties in the significance and interpretation of earlier in vitro work. Nevertheless, different laboratories using different techniques to analyze the effects of chilling in the light on photophosphorylation in intact cucumber (Cucumis sativus) leaves have come to very different conclusions regarding the role of impaired ATP formation capacity in the inhibition of net photosynthesis. In order to evaluate these discrepancies and bring this issue to a final resolution, in this investigation, we have made a detailed analysis of the decay of the flash-induced electrochromic shift and changes in chlorophyll fluorescence yield in cucumber leaves before, during and after a 5 h light-chill at chill temperatures of between 4 and 10°C. We feel that our findings address the major discrepancies in both data and interpretation as well as provide convincing evidence that photophosphorylation is not disrupted in cucumber leaves during or after light and chilling exposure. It follows that impaired photophosphorylation is not a contributing element to the inhibition of net photosynthesis that is widely observed in warm climate plants as a result of chilling in the light.

18.
Plant Physiol ; 88(2): 454-61, 1988 Oct.
Article in English | MEDLINE | ID: mdl-16666326

ABSTRACT

Impaired chloroplast function is responsible for nearly two-thirds of the inhibition of net photosynthesis caused by dark chilling in tomato (Lycopersicon esculentum Mill.). Yet the plant can eventually recover full photosynthetic capacity if it is rewarmed in darkness at high relative humidity. As a means of identifying potential sites of chilling injury in tomato, we monitored leaf protein synthesis in chilled plants during this rewarming recovery phase, since changes in the synthesis of certain proteins might be indicative of damaged processes in need of repair. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins pulse labeled with [(35)S]methionine revealed discrete changes in the pattern of protein synthesis as a result of chilling. A protein of M(r) = 27 kilodaltons (kD), abundantly synthesized by unchilled plants, declined to undetectable levels in chilled plants. Reillumination restored the synthesis of this protein in plants rewarmed for 8 hours. Peptide mapping analysis showed the 27 kD protein to be the major chlorophyll a/b binding protein of the photosystem II light-harvesting complex (LHCP-II). The identity of this protein was confirmed by its immunoprecipitation from leaf extracts by a monoclonal antibody specific for the major LHCP-II species. While chilling abolished the synthesis of the major LHCP-II species, it also induced the synthesis of an entirely new protein of M(r) = 35 kD. The protein was synthesized on cytoplasmic ribosomes, and two-dimensional polyacrylamide gel electrophroesis showed it to exist as a single isoelectric species. This chilling-induced 35 kD protein is structurally distinct from the 27 kD LHCP-II and appears to be synthesized specifically in response to low temperature. While the 35 kD protein was found not to be associated with the chloroplast thylakoid membrane, chilling did cause selective changes in thylakoid membrane protein synthesis. The synthesis of two unidentified proteins, M(r) = 14 and 41 kD, and the beta-subunit of the chloroplast coupling factor were substantially reduced after chilling. These losses may provide clues as to the causes of the overall reduction in net photosynthesis caused by chilling.

19.
Arch Biochem Biophys ; 248(2): 445-51, 1986 Aug 01.
Article in English | MEDLINE | ID: mdl-3740838

ABSTRACT

The binding of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to chloroplast thylakoid membranes was investigated by analyzing the inhibition of electron transfer by DBMIB according to a steady-state rate relationship for enzyme-catalyzed reactions in the presence of tightly binding reversible inhibitors. DBMIB interacts with the cytochrome b6f complex in a manner best described by an apparent dissociation constant near 6 nM. The binding site titer is 1 mmol X mol chlorophyll-1. This number of DBMIB binding sites approaches one-half the number of cytochrome b6f complexes present in the membrane. These data suggest that the cytochrome b6f complex may function in electron transfer as a dimer, plastoquinol oxidation being totally inhibited by the binding of a single DBMIB molecule to the dimer.


Subject(s)
Chloroplasts/metabolism , Cytochrome b Group/metabolism , Dibromothymoquinone/metabolism , Quinones/metabolism , Chloroplasts/drug effects , Cytochrome b Group/antagonists & inhibitors , Cytochrome b6f Complex , Dibromothymoquinone/pharmacology , Electron Transport/drug effects , Intracellular Membranes/metabolism , Oxidation-Reduction/drug effects , Plants
20.
Proc Natl Acad Sci U S A ; 89(9): 3731-5, 1992 May 01.
Article in English | MEDLINE | ID: mdl-1570291

ABSTRACT

Impaired chloroplast function is responsible for nearly two-thirds of the inhibition to net photosynthesis caused by dark chilling in tomato (Lycopersicon esculentum Mill.), yet it has not been possible to localize the dysfunction to specific chloroplast reactions. We report here on an effect that low-temperature exposure has in tomato on the expression of certain nuclear-encoded chloroplast proteins, which may be directly related to the chilling sensitivity of photosynthesis. Transcriptional activity of genes for both the chlorophyll a/b binding protein of photosystem II (Cab) as well as for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase was found to be controlled by an endogenous rhythm. For Cab this rhythm was also visible at the level of newly synthesized protein, indicating that the circadian control of transcriptional activity normally ensures that this protein is synthesized only during daylight hours. However, low-temperature treatment suspended the timing of the rhythm in tomato so that, upon rewarming, the circadian control was reestablished but was displaced from the actual time of day by the length of the chilling exposure. In addition, we found that the normal turnover of Cab and Rubisco activase mRNA was suspended during the low-temperature treatment, but, upon rewarming, this stabilized message was not translated into protein. We believe that the low-temperature-induced mistiming of gene expression together with its effect on the translatability of existing transcripts may be an important clue in unraveling the basis for the chilling sensitivity of photosynthesis in tomato.


Subject(s)
Chloroplasts/physiology , Cold Temperature , Plants/genetics , Circadian Rhythm , Gene Expression Regulation , Light-Harvesting Protein Complexes , Photosynthetic Reaction Center Complex Proteins/genetics , Photosystem II Protein Complex , Plant Proteins/genetics , RNA, Messenger/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL