Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Am J Respir Crit Care Med ; 210(1): 63-76, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38626355

ABSTRACT

Rationale: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic. Objectives: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. Methods: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived cells, cell cultures, and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. Measurements and Main Results: We identified biallelic pathogenic variants in WAP four-disulfide core domain 2 (WFDC2) in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and, thus, secretion of mature WFDC2. Conclusions: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis.


Subject(s)
Bronchiectasis , Nasal Polyps , Humans , Bronchiectasis/genetics , Bronchiectasis/physiopathology , Male , Female , Nasal Polyps/genetics , Adult , WAP Four-Disulfide Core Domain Protein 2 , Adolescent , Child , Middle Aged , Young Adult
2.
J Cell Sci ; 135(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35178554

ABSTRACT

Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.


Subject(s)
Axonemal Dyneins , Axoneme , Antigens, Surface/metabolism , Axonemal Dyneins/genetics , Axonemal Dyneins/metabolism , Axoneme/metabolism , Cilia/metabolism , Dyneins/genetics , Dyneins/metabolism , GTP-Binding Proteins/metabolism , Humans , Mutation/genetics , Respiratory System/metabolism
3.
PLoS Genet ; 16(8): e1008691, 2020 08.
Article in English | MEDLINE | ID: mdl-32764743

ABSTRACT

Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.


Subject(s)
Axoneme/metabolism , Ciliary Motility Disorders/genetics , Codon, Nonsense , Dyneins/metabolism , Proteins/genetics , 3T3 Cells , Adult , Animals , Axoneme/physiology , Cells, Cultured , Chlamydomonas reinhardtii , Cilia/metabolism , Cilia/physiology , Ciliary Motility Disorders/pathology , Conserved Sequence , Humans , Male , Mice , Microtubule-Associated Proteins , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Proteins/chemistry , Proteins/metabolism , Respiratory Mucosa/metabolism
4.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30665704

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Subject(s)
Cilia/pathology , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/physiopathology , Microfilament Proteins/deficiency , Microtubule-Associated Proteins/deficiency , Xenopus Proteins/deficiency , Animals , Ciliary Motility Disorders/pathology , Disease Models, Animal , Exons/genetics , Female , Gene Deletion , Genes, Lethal , Humans , Male , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microtubule-Associated Proteins/genetics , Phenotype , Rotation , Xenopus/embryology , Xenopus/genetics , Xenopus Proteins/genetics
5.
Cell Mol Life Sci ; 78(3): 769-797, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32915243

ABSTRACT

Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.


Subject(s)
Cilia/metabolism , Ciliary Motility Disorders/genetics , Animals , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/metabolism , Axoneme/metabolism , Cilia/genetics , Ciliary Motility Disorders/pathology , Disease Models, Animal , Dyneins/chemistry , Dyneins/genetics , Dyneins/metabolism , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Protein Binding
6.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33321047

ABSTRACT

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Case-Control Studies , Cell Culture Techniques , Humans
7.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163670

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms.


Subject(s)
Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/pathology , Microtubule-Associated Proteins/genetics , Mutant Proteins/metabolism , Adolescent , Adult , Case-Control Studies , Child , Cilia/metabolism , Cilia/ultrastructure , Dyneins/metabolism , Female , Humans , Male , Microtubule-Associated Proteins/metabolism , Middle Aged , Mutation/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Biophys J ; 120(8): 1387-1395, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33705757

ABSTRACT

Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ∼75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.


Subject(s)
Cystic Fibrosis , Mucociliary Clearance , Animals , Cattle , Epithelial Cells , Humans , Mucus
9.
J Hum Genet ; 65(2): 175-180, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31636325

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare disorder that affects the biogenesis or function of motile cilia resulting in chronic airway disease. PCD is genetically and phenotypically heterogeneous, with causative mutations identified in over 40 genes; however, the genetic basis of many cases is unknown. Using whole-exome sequencing, we identified three affected siblings with clinical symptoms of PCD but normal ciliary structure, carrying compound heterozygous loss-of-function variants in CFAP221. Computational analysis suggests that these variants are the most damaging alleles shared by all three siblings. Nasal epithelial cells from one of the subjects demonstrated slightly reduced beat frequency (16.5 Hz vs 17.7 Hz, p = 0.16); however, waveform analysis revealed that the CFAP221 defective cilia beat in an aberrant circular pattern. These results show that genetic variants in CFAP221 cause PCD and that CFAP221 should be considered a candidate gene in cases where PCD is suspected but cilia structure and beat frequency appear normal.


Subject(s)
Ciliary Motility Disorders/genetics , Genetic Variation , Proteins/genetics , Proteins/metabolism , Alleles , Calmodulin-Binding Proteins , Cilia/genetics , Ciliary Motility Disorders/diagnostic imaging , Epithelial Cells , Exons/genetics , Humans , Mutation , Exome Sequencing
10.
Am J Respir Cell Mol Biol ; 61(3): 312-321, 2019 09.
Article in English | MEDLINE | ID: mdl-30896965

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disease caused by mutations in over 40 different genes. Individuals with PCD caused by mutations in RSPH1 (radial spoke head 1 homolog) have been reported to have a milder phenotype than other individuals with PCD, as evidenced by a lower incidence of neonatal respiratory distress, higher nasal nitric oxide concentrations, and better lung function. To better understand genotype-phenotype relationships in PCD, we have characterized a mutant mouse model with a deletion of Rsph1. Approximately 50% of cilia from Rsph1-/- cells appeared normal by transmission EM, whereas the remaining cilia revealed a range of defects, primarily transpositions or a missing central pair. Ciliary beat frequency in Rsph1-/- cells was significantly lower than in control cells (20.2 ± 0.8 vs. 25.0 ± 0.9 Hz), and the cilia exhibited an aberrant rotational waveform. Young Rsph1-/- animals demonstrated a low rate of mucociliary clearance in the nasopharynx that was reduced to zero by about 1 month of age. Rsph1-/- animals accumulated mucus in the nasal cavity but had a lower bacterial burden than animals with a deletion of dynein axonemal intermediate chain 1 (Dnaic1-/-). Thus, Rsph1-/- mice display a PCD phenotype similar to but less severe than that observed in Dnaic1-/- mice, similar to what has been observed in humans. The results suggest that some individuals with PCD may not have a complete loss of mucociliary clearance and further suggest that early diagnosis and intervention may be important to maintain this low amount of clearance.


Subject(s)
DNA-Binding Proteins/genetics , Kartagener Syndrome/genetics , Mucociliary Clearance/genetics , Phenotype , Animals , Axoneme/genetics , Cilia/genetics , Humans , Mice , Mutation/genetics , Sequence Deletion/genetics
11.
J Proteome Res ; 16(4): 1579-1592, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28282151

ABSTRACT

Cilia are essential to many diverse cellular processes. Although many major axonemal components have been identified and studied, how they interact to form a functional axoneme is not completely understood. To further our understanding of the protein composition of human airway cilia, we performed a semiquantitative analysis of ciliary axonemes using label-free LC/MSE, which identified over 400 proteins with high confidence. Tubulins were the most abundant proteins identified, with evidence of 20 different isoforms obtained. Twelve different isoforms of axonemal dynein heavy chain were also identified. Absolute quantification of the nontubulin components demonstrated a greater than 75-fold range of protein abundance (RSPH9;1850 fmol vs CCDC103;24 fmol), adding another level of complexity to axonemal structure. Of the identified proteins, ∼70% are known axonemal proteins. In addition, many previously uncharacterized proteins were identified. Unexpectedly, several of these, including ERICH3, C1orf87, and CCDC181, were present at high relative abundance in the cilia. RT-PCR analysis and immunoblotting confirmed cilia-specific expression for eight uncharacterized proteins, and fluorescence microscopy demonstrated unique axonemal localizations. These studies have provided the first quantitative analysis of the ciliary proteome and have identified and characterized several previously unknown proteins as major constituents of human airway cilia.


Subject(s)
Axoneme/genetics , Cilia/genetics , Proteins/genetics , Proteome/genetics , Dyneins/genetics , Dyneins/isolation & purification , Gene Expression Regulation , Humans , Proteins/isolation & purification , Proteomics , Tubulin/genetics , Tubulin/isolation & purification
13.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L860-7, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26968767

ABSTRACT

Respiratory infections are a major cause of morbidity and mortality in the elderly. Previous reports have suggested that mucociliary clearance (MCC) is impaired in older individuals, but the cause is unclear. To unravel the mechanisms responsible for the age-associated decline in MCC, we investigated the MCC system in young (3 mo) and old (2 yr) C57BL/6 mice. We found that old mice had significantly reduced MCC function in both the upper and lower airways compared with young mice. Measurement of bioelectric properties of isolated tracheal and bronchial tissue revealed a significant decrease in Cl(-) secretion, suggesting that the older mice may have a reduced ability to maintain a sufficiently hydrated airway surface for efficient MCC. Ciliary beat frequency was also observed to be reduced in the older animals; however, this reduction was small relative to the reduction in MCC. Interestingly, the level of the major secreted mucin, Muc5b, was found to be reduced in both bronchioalveolar lavage and isolated tracheal tissue. Our previous studies of Muc5b(-/-) mice have demonstrated that Muc5b is essential for normal MCC in the mouse. Furthermore, examination of Muc5b(+/-) and wild-type animals revealed that heterozygous animals, which secrete ∼50% of the wild-type level of Muc5b, also demonstrate a markedly reduced level of MCC, confirming the importance of Muc5b levels to MCC. These results demonstrate that aged mice exhibit a decrease in MCC and suggest that a reduced level of secretion of both Cl(-) and Muc5b may be responsible.


Subject(s)
Aging , Mucin-5B/metabolism , Respiratory Mucosa/metabolism , Animals , Chlorides/metabolism , Lung/metabolism , Lung/pathology , Male , Mice, Inbred C57BL , Mucociliary Clearance , Trachea/metabolism
14.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L59-70, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26545902

ABSTRACT

Cystic fibrosis (CF), a genetic disease caused by mutations in the CFTR gene, is a life-limiting disease characterized by chronic bacterial airway infection and severe inflammation. Some CFTR mutants have reduced responsiveness to cAMP/PKA signaling; hence, pharmacological agents that elevate intracellular cAMP are potentially useful for the treatment of CF. By inhibiting cAMP breakdown, phosphodiesterase (PDE) inhibitors stimulate CFTR in vitro and in vivo. Here, we demonstrate that PDE inhibition by RPL554, a drug that has been shown to cause bronchodilation in asthma and chronic obstructive pulmonary disease (COPD) patients, stimulates CFTR-dependent ion secretion across bronchial epithelial cells isolated from patients carrying the R117H/F508del CF genotype. RPL554-induced CFTR activity was further increased by the potentiator VX-770, suggesting an additional benefit by the drug combination. RPL554 also increased cilia beat frequency in primary human bronchial epithelial cells. The results indicate RPL554 may increase mucociliary clearance through stimulation of CFTR and increasing ciliary beat frequency and thus could provide a novel therapeutic option for CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Isoquinolines/pharmacology , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Pyrimidinones/pharmacology , Asthma/drug therapy , Asthma/metabolism , Cells, Cultured , Epithelial Cells/drug effects , Humans , Ion Transport/drug effects , Mucociliary Clearance/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism
15.
Am J Hum Genet ; 92(1): 99-106, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23261302

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only ~60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.


Subject(s)
Kartagener Syndrome/genetics , Microtubule-Associated Proteins/genetics , Mutation , Adult , Child, Preschool , Exome , Female , Genes, Recessive , Humans , Male , Middle Aged , Pedigree , Protein Isoforms , Sequence Analysis, DNA
16.
Am J Hum Genet ; 93(4): 711-20, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24055112

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.


Subject(s)
Antigens, Surface/genetics , Cilia/genetics , Ciliary Motility Disorders/genetics , Dyneins/genetics , GTP-Binding Proteins/genetics , Kartagener Syndrome/genetics , Mutation/genetics , Adolescent , Adult , Animals , Axoneme/genetics , Child , Child, Preschool , Cytoplasm/genetics , Epithelial Cells/metabolism , Exome , Female , Humans , Infant , Male , Pedigree , Phenotype , Young Adult , Zebrafish
17.
Opt Lett ; 41(24): 5620-5623, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973473

ABSTRACT

The three most important metrics in optical coherence tomography (OCT) are resolution, speed, and sensitivity. Because there is a complex interplay between these metrics, no previous work has obtained the best performance in all three metrics simultaneously. We demonstrate that a high-power supercontinuum source, in combination with parallel spectral-domain OCT, achieves an unparalleled combination of resolution, speed, and sensitivity. This system captures cross-sectional images spanning 4 mm×0.5 mm at 1,024,000 lines/s with 2×14 µm resolution (axial×transverse) at a sensitivity of 113 dB. Imaging using the proposed system is demonstrated on highly differentiated human bronchial epithelial cells to capture and spatially localize ciliary dynamics.

18.
Am J Physiol Lung Cell Mol Physiol ; 309(2): L99-108, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25979076

ABSTRACT

Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated.


Subject(s)
Cilia/physiology , Epithelial Cells/metabolism , Mucociliary Clearance/physiology , Mucus/metabolism , Respiratory System/metabolism , Cells, Cultured , Cilia/ultrastructure , Epithelial Cells/cytology , Humans , In Vitro Techniques , Microscopy, Phase-Contrast
19.
Am J Respir Crit Care Med ; 189(6): 707-17, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24568568

ABSTRACT

RATIONALE: Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. OBJECTIVES: To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. METHODS: Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. MEASUREMENTS AND MAIN RESULTS: We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. CONCLUSIONS: The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.


Subject(s)
DNA-Binding Proteins/genetics , Kartagener Syndrome/genetics , Mutation , Adolescent , Adult , Child , Cilia/physiology , DNA Mutational Analysis , Exome , Female , Genetic Association Studies , Genetic Markers , Genetic Testing , Homozygote , Humans , Kartagener Syndrome/physiopathology , Linear Models , Male , Middle Aged , Nasal Mucosa/physiology , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL