Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proteomics ; : e2300292, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676470

ABSTRACT

The cuticles of arthropods provide an interface between the organism and its environment. Thus, the cuticle's structure influences how the organism responds to and interacts with its surroundings. Here, we used label-free quantification proteomics to provide a proteome of the moulted cuticle of the aquatic crustacean Daphnia magna, which has long been a prominent subject of studies on ecology, evolution, and developmental biology. We detected a total of 278 high-confidence proteins. Using protein sequence domain and functional enrichment analyses, we identified chitin-binding structural proteins and chitin-modifying enzymes as the most abundant protein groups in the cuticle proteome. Structural cuticular protein families showed a similar distribution to those found in other arthropods and indicated proteins responsible for the soft and flexible structure of the Daphnia cuticle. Finally, cuticle protein genes were also clustered as tandem gene arrays in the D. magna genome. The cuticle proteome presented here will be a valuable resource to the Daphnia research community, informing genome annotations and investigations on diverse topics such as the genetic basis of interactions with predators and parasites.

2.
PLoS Biol ; 17(2): e3000128, 2019 02.
Article in English | MEDLINE | ID: mdl-30716062

ABSTRACT

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.


Subject(s)
Adaptation, Physiological/genetics , Drosophila simulans/genetics , Drosophila simulans/physiology , Multifactorial Inheritance/genetics , Alleles , Animals , Biological Evolution , Genetic Fitness , Genetic Heterogeneity , Genome, Insect , Haplotypes/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
3.
Mol Biol Evol ; 37(9): 2630-2640, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32402077

ABSTRACT

Neuronal activity is temperature sensitive and affects behavioral traits important for individual fitness, such as locomotion and courtship. Yet, we do not know enough about the evolutionary response of neuronal phenotypes in new temperature environments. Here, we use long-term experimental evolution of Drosophila simulans populations exposed to novel temperature regimes. Here, we demonstrate a direct relationship between thermal selective pressure and the evolution of neuronally expressed molecular and behavioral phenotypes. Several essential neuronal genes evolve lower expression at high temperatures and higher expression at low temperatures, with dopaminergic neurons standing out by displaying the most consistent expression change across independent replicates. We functionally validate the link between evolved gene expression and behavioral changes by pharmacological intervention in the experimentally evolved D. simulans populations as well as by genetically triggered expression changes of key genes in D. melanogaster. As natural temperature clines confirm our results for Drosophila and Anopheles populations, we conclude that neuronal dopamine evolution is a key factor for temperature adaptation.


Subject(s)
Acclimatization/genetics , Biological Evolution , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Drosophila/metabolism , Animals , Dopamine/genetics , Drosophila/genetics , Locomotion/genetics , Male , Phenotype
4.
Mol Hum Reprod ; 22(12): 867-881, 2016 12.
Article in English | MEDLINE | ID: mdl-27604460

ABSTRACT

STUDY QUESTION: Can supplementation of media with a glutathione (GSH) donor, glutathione ethyl ester (GEE), prior to vitrification protect the mouse oocyte from oxidative damage and critical changes in redox homeostasis, and thereby improve cryotolerance? SUMMARY ANSWER: GEE supplementation supported redox regulation, rapid recovery of spindle and chromosome alignment after vitrification/warming and improved preimplantation development of mouse metaphase II (MII) oocytes. WHAT IS KNOWN ALREADY: Cryopreservation may affect mitochondrial functionality, induce oxidative stress, and thereby affect spindle integrity, chromosome segregation and the quality of mammalian oocytes. GEE is a membrane permeable GSH donor that promoted fertilization and early embryonic development of macaque and bovine oocytes after IVM. STUDY DESIGN, SIZE, DURATION: Two experimental groups consisted of (i) denuded mouse germinal vesicle (GV) oocytes that were matured in vitro in the presence or absence of 1 mM GEE (IVM group 1) and (ii) in vivo ovulated (IVO) MII oocytes that were isolated from the ampullae and exposed to 1 mM GEE for 1 h prior to vitrification (IVO group 2). Recovery of oocytes from both groups was followed after CryoTop vitrification/warming for up to 2 h and parthenogenetic activation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Reactive oxygen species (ROS), spindle morphology and chromosome alignment were analyzed by confocal laser scanning microscopy (CLSM) and polarization microscopy in control and GEE-supplemented MII oocytes. The relative overall intra-oocyte GSH content was assessed by analysis of monochlorobimane (MBC)-GSH adduct fluorescence in IVM MII oocytes. The GSH-dependent intra-mitochondrial redox potential (EmGSH) of IVM MII oocytes was determined after microinjection with specific mRNA at the GV stage to express a redox-sensitive probe within mitochondria (mito-Grx1-roGFP2). The absolute negative redox capacity (in millivolts) was determined by analysis of fluorescence of the oxidized versus the reduced form of sensor by CLSM and quantification according to Nernst equation. Proteome analysis was performed by quantitative 2D saturation gel electrophoresis (2D DIGE). Since microinjection and expression of redox sensor mRNA required removal of cumulus cells, and IVM of denuded mouse oocytes in group 1 induces zona hardening, the development to blastocysts was not assessed after IVF but instead after parthenogenetic activation of vitrified/warmed MII oocytes from both experimental groups. MAIN RESULTS AND ROLE OF CHANCE: IVM of denuded mouse oocytes in the presence of 1 mM GEE significantly increased intra-oocyte GSH content. ROS was not increased by CryoTop vitrification but was significantly lower in the IVM GEE group compared to IVM without GEE before vitrification and after recovery from vitrification/warming (P < 0.001). Vitrification alone significantly increased the GSH-dependent intra-mitochondrial redox capacity after warming (EmGSH, P < 0.001) in IVM oocytes, presumably by diffusion/uptake of cytoplasmic GSH into mitochondria. The presence of 1 mM GEE during IVM increased the redox capacity before vitrification and there was no further increase after vitrification/warming. None of the reproducibly detected 1492 spots of 2D DIGE separated proteins were significantly altered by vitrification or GEE supplementation. However, IVM of denuded oocytes significantly affected spindle integrity and chromosome alignment right after warming from vitrification (0 h) in group 1 and spindle integrity in group 2 (P < 0.05). GEE improved recovery in IVM group as numbers of oocytes with unaligned chromosomes and aberrant spindles was not significantly increased compared to unvitrified controls. The supplementation with GEE for 1 h before vitrification also supported more rapid recovery of spindle birefringence. GEE improved significantly development to the 2-cell stage for MII oocytes that were activated directly after vitrification/warming in both experimental groups, and also the blastocyst rate in the IVO GEE-supplemented group compared to the controls (P < 0.05). LARGE SCALE DATA: None LIMITATIONS, REASONS FOR CAUTION: The studies were carried out in a mouse model, in IVM denuded rather than cumulus-enclosed oocytes, and in activated rather than IVF MII oocytes. Whether the increased GSH-dependent intra-mitochondrial redox capacity also improves male pronuclear formation needs to be studied further experimentally. The influence of GEE supplementation requires also further examination and optimization in human oocytes before it can be considered for clinical ART. WIDER IMPLICATIONS OF THE FINDINGS: Although GEE supplementation did not alter the proteome at MII, the GSH donor may support cellular homeostasis and redox regulation and, thus, increase developmental competence. While human MII oocyte vitrification is an established procedure, GEE might be particularly beneficial for oocytes that suffer from oxidative stress and reduced redox capacity (e.g. aged oocytes) or possess low GSH due to a reduced supply of GSH from cumulus. It might also be of relevance for immature human oocytes that develop without cumulus to MII in vitro (e.g. in ICSI cycles) for ART. STUDY FUNDING AND COMPETING INTERESTS: The study has been supported by the German Research Foundation (DFG FOR 1041; EI 199/3-2). There are no conflict of interests.


Subject(s)
Glutathione/analogs & derivatives , Oocytes/drug effects , Animals , Female , Glutathione/metabolism , Glutathione/pharmacology , Metaphase/drug effects , Metaphase/genetics , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vitrification/drug effects
5.
Mol Ecol ; 24(15): 3901-17, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26111196

ABSTRACT

Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna.


Subject(s)
Daphnia/genetics , Ecosystem , Predatory Behavior , Proteome/genetics , Animals , Daphnia/anatomy & histology , Europe , Female , Food Chain , Genotype , Phenotype , Proteomics
6.
Proteomics ; 14(12): 1569-73, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24687995

ABSTRACT

Proteomics represents a powerful tool for the analysis of fish spermatozoa, since these cells are transcriptionally inactive. The aim of the present study was to generate an inventory of the most prominent rainbow trout sperm proteins by SDS-PAGE prefractionation combined with nano-LC-MS/MS based identification. This study provides the first in-depth analysis of the rainbow trout sperm proteome, with a total of 206 identified proteins. We found that rainbow trout spermatozoa are equipped with functionally diverse proteins related to energetic metabolism, signal transduction, protein turnover, transport, cytoskeleton, oxidative injuries, and stress and reproduction. The availability of a catalog of rainbow trout sperm proteins provides a crucial tool for the understanding of fundamental molecular processes in fish spermatozoa, for the ongoing development of novel markers of sperm quality and for the optimization of short- and long-term sperm preservation procedures. The MS data are available at ProteomeXchange with the dataset identifier PXD000355 and DOI 10.6019/PXD000355.


Subject(s)
Fish Proteins/metabolism , Oncorhynchus mykiss/metabolism , Proteome/metabolism , Proteomics/methods , Spermatozoa/metabolism , Animals , Chromatography, Liquid , Male , Spermatozoa/cytology , Tandem Mass Spectrometry
7.
Proteomics ; 14(1): 133-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24174285

ABSTRACT

In the study, the combination of protein fractionation by 1DE and HPLC-ESI-MS/MS was used to characterize the rainbow trout seminal plasma proteome. Our results led to the creation of a catalogue of rainbow trout seminal plasma proteins (152 proteins) and significantly contributed to the current knowledge regarding the protein composition of fish seminal plasma. The major proteins of rainbow trout seminal plasma, such as transferrin, apolipoproteins, complement C3, serum albumin, and hemopexin-, alpha-1-antiproteinase-, and precerebellin-like protein, were recognized as acute-phase proteins (proteins that plasma concentration changes in response to inflammation). This study provides the basis for further functional studies of fish seminal plasma proteins, as well as for the identification of novel biomarkers for sperm quality. The MS data have been deposited in the ProteomeXchange with identifier PXD000306 (http://proteomecentral.proteomexchange.org/dataset/PXD000306).


Subject(s)
Fish Proteins/analysis , Oncorhynchus mykiss , Proteome/analysis , Seminal Plasma Proteins/analysis , Animals , Chromatography, High Pressure Liquid , Fish Proteins/chemistry , Fish Proteins/classification , Male , Proteome/chemistry , Proteomics , Seminal Plasma Proteins/chemistry , Seminal Plasma Proteins/classification , Tandem Mass Spectrometry
8.
J Proteome Res ; 13(10): 4363-76, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25102770

ABSTRACT

Development of early embryonic stages before activation of the embryonic genome depends on sufficiently stored products of the maternal genome, adequate recruitment and degradation of mRNAs, as well as activation, deactivation, and relocation of proteins. By application of an isobaric tagging for relative and absolute quantification (iTRAQ)-based approach, the proteomes of bovine embryos at the zygote and 2-cell and 4-cell stage with MII oocytes as a reference were quantitatively analyzed. Of 1072 quantified proteins, 87 differed significantly in abundance between the four stages. The proteomes of 2-cell and 4-cell embryos differed most from the reference MII oocyte, and a considerable fraction of proteins continuously increased in abundance during the stages analyzed, despite a strongly attenuated rate of translation reported for this period. Bioinformatic analysis revealed particularly interesting proteins involved in the p53 pathway, lipid metabolism, and mitosis. Verification of iTRAQ results by targeted SRM (selected reaction monitoring) analysis revealed excellent agreement for all five proteins analyzed. By principal component analysis, SRM quantifications comprising a panel of only five proteins were shown to discriminate between all four developmental stages analyzed here. For future experiments, an expanded SRM protein panel will provide the potential to detect developmental disturbances with high sensitivity and enable first insights into the underlying molecular pathways.


Subject(s)
Embryonic Development , Proteome , Animals , Cattle , Principal Component Analysis , Subcellular Fractions/metabolism
9.
BMC Genomics ; 15: 306, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24762235

ABSTRACT

BACKGROUND: Phenotypic plasticity in defensive traits occurs in many species when facing heterogeneous predator regimes. The waterflea Daphnia is well-known for showing a variety of these so called inducible defences. However, molecular mechanisms underlying this plasticity are poorly understood so far. We performed proteomic analysis on Daphnia magna exposed to chemical cues of the predator Triops cancriformis. D. magna develops an array of morphological changes in the presence of Triops including changes of carapace morphology and cuticle hardening. RESULTS: Using the 2D-DIGE technique, 1500 protein spots could be matched and quantified. We discovered 179 protein spots with altered intensity when comparing Triops exposed animals to a control group, and 69 spots were identified using nano-LC MS/MS. Kairomone exposure increased the intensity of spots containing muscle proteins, cuticle proteins and chitin-modifying enzymes as well as enzymes of carbohydrate and energy metabolism. The yolk precursor protein vitellogenin decreased in abundance in 41 of 43 spots. CONCLUSION: Identified proteins may be either directly involved in carapace stability or reflect changes in energy demand and allocation costs in animals exposed to predator kairomones. Our results present promising candidate proteins involved in the expression of inducible defences in Daphnia and enable further in depth analysis of this phenomenon.


Subject(s)
Daphnia/metabolism , Proteomics , Animals , Daphnia/physiology , Predatory Behavior
10.
Mol Ecol Resour ; 24(2): e13872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37772701

ABSTRACT

How organisms adapt to their environment is not only a central topic of evolutionary biology but also a pressing question in the light of recent global change. Unravelling the genetic basis of these local adaptations can help to predict the response of a population to an increase in temperature or the more frequent occurrence of droughts. A popular approach to study the genes that drive local adaptation is the analysis of genotype-environment associations (GEA), testing the correlation of genomic features (typically single-nucleotide polymorphisms, SNPs) and environmental conditions. In this issue of Molecular Ecology Resources, Booker et al. (Molecular Ecology Resources, 2023) present a new approach to GEA, introducing genomic window analysis. They combine the information of neighbouring SNPs instead of analysing each SNP independently, therefore gaining power for detecting genomic signals of environmental adaptation. Using simulations of local adaptation to a heterogeneous environment as well as previously published real data from a natural population of lodgepole pine, they prove the superiority of their method over several established GEA approaches, especially in the case of small sample sizes. Leveraging the information present in closely linked genomic sites, Booker et al. (Molecular Ecology Resources, 2023) take genotype-environment association studies to the next level.


Subject(s)
Adaptation, Physiological , Genome , Adaptation, Physiological/genetics , Genotype , Genomics , Biological Evolution , Polymorphism, Single Nucleotide , Genetics, Population
11.
Genome Biol Evol ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37232360

ABSTRACT

Most organismal phenotypes have a polygenic basis, which enables adaptive phenotypic responses on ecological time scales. While adaptive phenotypic changes are highly parallel in replicate populations, this does not apply to the contributing loci. In particular for small populations, the same phenotypic shift can be fueled by different sets of alleles at alternative loci (genetic redundancy). Although this phenomenon is empirically well supported, the molecular basis of the genetic redundancy is not yet understood. To fill this gap, we compared the heterogeneity of the evolutionary transcriptomic and metabolomic response in ten Drosophila simulans populations which evolved parallel high-level phenotypic changes in a novel temperature environment but used different allelic combinations of alternative loci. We showed that the metabolome evolved more parallel than the transcriptome, confirming a hierarchical organization of molecular phenotypes. Different sets of genes responded in each evolved population but led to the enrichment of similar biological functions and a consistent metabolic profile. Since even the metabolomic response was still highly heterogeneous across evolved populations, we propose that selection may operate on pathways/networks.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Phenotype , Drosophila simulans , Metabolome , Biological Evolution
12.
Evol Appl ; 16(10): 1671-1679, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38020870

ABSTRACT

Larval crowding is one common ecological stressor for many insect species. In Drosophila, high larval density alters multiple widely-studied phenotypes including life-history traits, morphology and behavior. Nevertheless, we still miss a holistic view of the full range of phenotypic changes and the underlying molecular mechanisms. In this study, we analyzed the adult transcriptomes of high and low larval density fly cohorts, and highlighted the molecular basis of the plastic traits. Increased cellular energy metabolism and locomotion, along with reduced reproductive investment, are key responses to high larval density. Moreover, we compared the expression changes among cohorts with different developmental delays caused by larval crowding. The majority of genes induced by larval crowding showed the strongest expression alterations in cohorts with intermediate delay. Furthermore, linear expression changes were observed in genes related to nutrition and detoxification. Comparing different high-density cohorts could provide insights into the varied responses to distinct larval crowding-induced stresses such as space competition, food degradation and waste accumulation.

13.
Mol Ecol Resour ; 21(1): 93-109, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32810339

ABSTRACT

Shifting from the analysis of single nucleotide polymorphisms to the reconstruction of selected haplotypes greatly facilitates the interpretation of evolve and resequence (E&R) experiments. Merging highly correlated hitchhiker SNPs into haplotype blocks reduces thousands of candidates to few selected regions. Current methods of haplotype reconstruction from Pool-seq data need a variety of data-specific parameters that are typically defined ad hoc and require haplotype sequences for validation. Here, we introduce haplovalidate, a tool which detects selected haplotypes in Pool-seq time series data without the need for sequenced haplotypes. Haplovalidate makes data-driven choices of two key parameters for the clustering procedure, the minimum correlation between SNPs constituting a cluster and the window size. Applying haplovalidate to simulated E&R data reliably detects selected haplotype blocks with low false discovery rates. Importantly, our analyses identified a restriction of the haplotype block-based approach to describe the genomic architecture of adaptation. We detected a substantial fraction of haplotypes containing multiple selection targets. These blocks were considered as one region of selection and therefore led to underestimation of the number of selection targets. We demonstrate that the separate analysis of earlier time points can significantly increase the separation of selection targets into individual haplotype blocks. We conclude that the analysis of selected haplotype blocks has great potential for the characterization of the adaptive architecture with E&R experiments.


Subject(s)
Genomics , Haplotypes , Models, Genetic , Polymorphism, Single Nucleotide , Genome , Linkage Disequilibrium
14.
Ecol Evol ; 11(21): 15312-15324, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765180

ABSTRACT

Fluidity of a given membrane decreases at lower ambient temperatures, whereas it rises at increasing temperatures, which is achieved through changes in membrane lipid composition. In consistence with homeoviscous adaptation theory, lower temperatures result in increased tissue concentrations of polyunsaturated fatty acids (PUFAs) in Daphnia magna, suggesting a higher PUFA requirement at lower temperatures. However, so far homeoviscous adaptation has been suggested for single or geographically separated Daphnia genotypes only. Here, we investigated changes in relative fatty acid (FA) tissue concentrations in response to a lower temperature (15°C) within a D. magna population. We determined juvenile growth rates (JGR) and FA patterns of 14 genotypes that were grown on Chlamydomonas klinobasis at 15°C and 20°C. We report significant differences of JGR and the relative body content of various FAs between genotypes at either temperature and between temperatures. Based on slopes of reaction norms, we found genotype-specific changes in FA profiles between temperatures suggesting that genotypes have different strategies to cope with changing temperatures. In a hierarchical clustering analysis, we grouped genotypes according to differences in direction and magnitude of changes in relative FA content, which resulted in three clusters of genotypes following different patterns of changes in FA composition. These patterns suggest a lower importance of the PUFA eicosapentaenoic acid (EPA, C20:5ω3) than previously assumed. We calculated an unsaturation index (UI) as a proxy for membrane fluidity at 15°C, and we neither found significant differences for this UI nor for fitness, measured as JGR, between the three genotype clusters. We conclude that these three genotype clusters represent different physiological solutions to temperature changes by altering the relative share of different FAs, but that their phenotypes converge with respect to membrane fluidity and JGR. These clusters will be subjected to different degrees of PUFA limitation when sharing the same diet.

15.
Genome Biol ; 22(1): 211, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34271951

ABSTRACT

BACKGROUND: Understanding the genetic architecture of temperature adaptation is key for characterizing and predicting the effect of climate change on natural populations. One particularly promising approach is Evolve and Resequence, which combines advantages of experimental evolution such as time series, replicate populations, and controlled environmental conditions, with whole genome sequencing. Recent analysis of replicate populations from two different Drosophila simulans founder populations, which were adapting to the same novel hot environment, uncovered very different architectures-either many selection targets with large heterogeneity among replicates or fewer selection targets with a consistent response among replicates. RESULTS: Here, we expose the founder population from Portugal to a cold temperature regime. Although almost no selection targets are shared between the hot and cold selection regime, the adaptive architecture was similar. We identify a moderate number of targets under strong selection (19 selection targets, mean selection coefficient = 0.072) and parallel responses in the cold evolved replicates. This similarity across different environments indicates that the adaptive architecture depends more on the ancestry of the founder population than the specific selection regime. CONCLUSIONS: These observations will have broad implications for the correct interpretation of the genomic responses to a changing climate in natural populations.


Subject(s)
Adaptation, Physiological/genetics , Drosophila simulans/genetics , Genome, Insect , Genomics/methods , Multifactorial Inheritance , Alleles , Animals , Cold Temperature , Female , Florida , Gene Frequency , Genetics, Population , High-Throughput Nucleotide Sequencing , Hot Temperature , Linkage Disequilibrium , Male , Portugal
16.
Genes (Basel) ; 10(2)2019 01 28.
Article in English | MEDLINE | ID: mdl-30696109

ABSTRACT

Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.


Subject(s)
Aging/genetics , Evolution, Molecular , Thermotolerance/genetics , Transcriptome , Animals , Drosophila , Female , Male
17.
Mol Ecol Resour ; 17(6): 1148-1155, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28130873

ABSTRACT

Recent technological advances have increased the throughput of proteomics, facilitating the characterization of molecular phenotypes on the population level, thus bearing the potential to complement transcriptomic analyses. Reference protein databases are crucial for the analysis and quantification, because only peptides in the protein database can be identified. Any peptide carrying an amino acid variant cannot be identified. Because most proteomic studies, even of natural populations, do not account for polymorphisms, we analysed the influence of variant peptides on quantitative proteomic analyses. We used transcriptomic and proteomic data of two Drosophila melanogaster genotypes and identified genotype-specific variants from RNA-seq data. We introduce a simple pipeline to include these variants in a polymorphism-aware protein database and compared the results to an unmodified reference database. The polymorphism-aware database not only identifies more peptides, but the quantitative values also changed when peptide variants were included. We conclude that proteomic quantification is likely to be biased, in particular for small genes, when polymorphisms are being ignored. Polymorphism-aware databases may be therefore a key step towards improved proteomic data analyses, especially for the analysis of pooled individuals and the comparison of population samples.


Subject(s)
Databases, Protein , Drosophila Proteins/analysis , Drosophila Proteins/genetics , Genetic Variation , Proteomics/methods , Animals , Drosophila melanogaster/classification , Drosophila melanogaster/genetics , Gene Expression Profiling , Genotype , Sequence Analysis, RNA
18.
G3 (Bethesda) ; 6(11): 3507-3515, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27613752

ABSTRACT

The cost-effectiveness of sequencing pools of individuals (Pool-Seq) provides the basis for the popularity and widespread use of this method for many research questions, ranging from unraveling the genetic basis of complex traits, to the clonal evolution of cancer cells. Because the accuracy of Pool-Seq could be affected by many potential sources of error, several studies have determined, for example, the influence of sequencing technology, the library preparation protocol, and mapping parameters. Nevertheless, the impact of the mapping tools has not yet been evaluated. Using simulated and real Pool-Seq data, we demonstrate a substantial impact of the mapping tools, leading to characteristic false positives in genome-wide scans. The problem of false positives was particularly pronounced when data with different read lengths and insert sizes were compared. Out of 14 evaluated algorithms novoalign, bwa mem and clc4 are most suitable for mapping Pool-Seq data. Nevertheless, no single algorithm is sufficient for avoiding all false positives. We show that the intersection of the results of two mapping algorithms provides a simple, yet effective, strategy to eliminate false positives. We propose that the implementation of a consistent Pool-Seq bioinformatics pipeline, building on the recommendations of this study, can substantially increase the reliability of Pool-Seq results, in particular when libraries generated with different protocols are being compared.

19.
Sci Rep ; 6: 33362, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27634466

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.


Subject(s)
Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Proteome/metabolism , Aging/pathology , Animals , Disease Models, Animal , Dystrophin/deficiency , Dystrophin/metabolism , Immunohistochemistry , Mitochondrial Proteins/metabolism , Muscle Fibers, Fast-Twitch , Muscle Fibers, Slow-Twitch , Muscle Proteins/metabolism , Myosin Heavy Chains/metabolism , Sus scrofa
20.
NPJ Microgravity ; 1: 15016, 2015.
Article in English | MEDLINE | ID: mdl-28725717

ABSTRACT

BACKGROUND: The waterflea Daphnia is an interesting candidate for bioregenerative life support systems (BLSS). These animals are particularly promising because of their central role in the limnic food web and its mode of reproduction. However, the response of Daphnia to altered gravity conditions has to be investigated, especially on the molecular level, to evaluate the suitability of Daphnia for BLSS in space. METHODS: In this study, we applied a proteomic approach to identify key proteins and pathways involved in the response of Daphnia to simulated microgravity generated by a two-dimensional (2D) clinostat. We analyzed five biological replicates using 2D-difference gel electrophoresis proteomic analysis. RESULTS: We identified 109 protein spots differing in intensity (P<0.05). Substantial fractions of these proteins are involved in actin microfilament organization, indicating the disruption of cytoskeletal structures during clinorotation. Furthermore, proteins involved in protein folding were identified, suggesting altered gravity induced breakdown of protein structures in general. In addition, simulated microgravity increased the abundance of energy metabolism-related proteins, indicating an enhanced energy demand of Daphnia. CONCLUSIONS: The affected biological processes were also described in other studies using different organisms and systems either aiming to simulate microgravity conditions or providing real microgravity conditions. Moreover, most of the Daphnia protein sequences are well-conserved throughout taxa, indicating that the response to altered gravity conditions in Daphnia follows a general concept. Data are available via ProteomeXchange with identifier PXD002096.

SELECTION OF CITATIONS
SEARCH DETAIL