Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34472594

ABSTRACT

In the past decade, convolutional neural networks (CNNs) have been used as powerful tools by scientists to solve visual data tasks. However, many efforts of convolutional neural networks in solving protein function prediction and extracting useful information from protein sequences have certain limitations. In this research, we propose a new method to improve the weaknesses of the previous method. mCNN-ETC is a deep learning model which can transform the protein evolutionary information into image-like data composed of 20 channels, which correspond to the 20 amino acids in the protein sequence. We constructed CNN layers with different scanning windows in parallel to enhance the useful pattern detection ability of the proposed model. Then we filtered specific patterns through the 1-max pooling layer before inputting them into the prediction layer. This research attempts to solve a basic problem in biology in terms of application: predicting electron transporters and classifying their corresponding complexes. The performance result reached an accuracy of 97.41%, which was nearly 6% higher than its predecessor. We have also published a web server on http://bio219.bioinfo.yzu.edu.tw, which can be used for research purposes free of charge.


Subject(s)
Electrons , Neural Networks, Computer , Amino Acid Sequence , Biological Evolution , Humans , Proteins/chemistry
2.
J Chem Inf Model ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133248

ABSTRACT

Mitochondrial carriers (MCs) are essential proteins that transport metabolites across mitochondrial membranes and play a critical role in cellular metabolism. ADP/ATP (adenosine diphosphate/adenosine triphosphate) is one of the most important carriers as it contributes to cellular energy production and is susceptible to the powerful toxin bongkrekic acid. This toxin has claimed several lives; for example, a recent foodborne outbreak in Taipei, Taiwan, has caused four deaths and sickened 30 people. The issue of bongkrekic acid poisoning has been a long-standing problem in Indonesia, with reports as early as 1895 detailing numerous deaths from contaminated coconut fermented cakes. In bioinformatics, significant advances have been made in understanding biological processes through computational methods; however, no established computational method has been developed for identifying mitochondrial carriers. We propose a computational bioinformatics approach for predicting MCs from a broader class of secondary active transporters with a focus on the ADP/ATP carrier and its interaction with bongkrekic acid. The proposed model combines protein language models (PLMs) with multiwindow scanning convolutional neural networks (mCNNs). While PLM embeddings capture contextual information within proteins, mCNN scans multiple windows to identify potential binding sites and extract local features. Our results show 96.66% sensitivity, 95.76% specificity, 96.12% accuracy, 91.83% Matthews correlation coefficient (MCC), 94.63% F1-Score, and 98.55% area under the curve (AUC). The results demonstrate the effectiveness of the proposed approach in predicting MCs and elucidating their functions, particularly in the context of bongkrekic acid toxicity. This study presents a valuable approach for identifying novel mitochondrial complexes, characterizing their functional roles, and understanding mitochondrial toxicology mechanisms. Our findings, that utilize computational methods to improve our understanding of cellular processes and drug-target interactions, contribute to the development of therapeutic strategies for mitochondrial disorders, reducing the devastating effects of bongkrekic acid poisoning.

3.
Methods ; 220: 11-20, 2023 12.
Article in English | MEDLINE | ID: mdl-37871661

ABSTRACT

Secondary active transporters play pivotal roles in regulating ion and molecule transport across cell membranes, with implications in diseases like cancer. However, studying transporters via biochemical experiments poses challenges. We propose an effective computational approach to identify secondary active transporters from membrane protein sequences using pre-trained language models and deep learning neural networks. Our dataset comprised 290 secondary active transporters and 5,420 other membrane proteins from UniProt. Three types of features were extracted - one-hot encodings, position-specific scoring matrix profiles, and contextual embeddings from the ProtTrans language model. A multi-window convolutional neural network architecture scanned the ProtTrans embeddings using varying window sizes to capture multi-scale sequence patterns. The proposed model combining ProtTrans embeddings and multi-window convolutional neural networks achieved 86% sensitivity, 99% specificity and 98% overall accuracy in identifying secondary active transporters, outperforming conventional machine learning approaches. This work demonstrates the promise of integrating pre-trained language models like ProtTrans with multi-scale deep neural networks to effectively interpret transporter sequences for functional analysis. Our approach enables more accurate computational identification of secondary active transporters, advancing membrane protein research.


Subject(s)
Deep Learning , Membrane Proteins , Neural Networks, Computer , Machine Learning , Amino Acid Sequence
4.
Proteomics ; 23(23-24): e2200494, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863817

ABSTRACT

Membrane proteins play a crucial role in various cellular processes and are essential components of cell membranes. Computational methods have emerged as a powerful tool for studying membrane proteins due to their complex structures and properties that make them difficult to analyze experimentally. Traditional features for protein sequence analysis based on amino acid types, composition, and pair composition have limitations in capturing higher-order sequence patterns. Recently, multiple sequence alignment (MSA) and pre-trained language models (PLMs) have been used to generate features from protein sequences. However, the significant computational resources required for MSA-based features generation can be a major bottleneck for many applications. Several methods and tools have been developed to accelerate the generation of MSAs and reduce their computational cost, including heuristics and approximate algorithms. Additionally, the use of PLMs such as BERT has shown great potential in generating informative embeddings for protein sequence analysis. In this review, we provide an overview of traditional and more recent methods for generating features from protein sequences, with a particular focus on MSAs and PLMs. We highlight the advantages and limitations of these approaches and discuss the methods and tools developed to address the computational challenges associated with features generation. Overall, the advancements in computational methods and tools provide a promising avenue for gaining deeper insights into the function and properties of membrane proteins, which can have significant implications in drug discovery and personalized medicine.


Subject(s)
Algorithms , Membrane Proteins , Animals , Horses , Sequence Alignment , Amino Acid Sequence , Sequence Analysis, Protein , Computational Biology/methods
5.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34322702

ABSTRACT

Since 2015, a fast growing number of deep learning-based methods have been proposed for protein-ligand binding site prediction and many have achieved promising performance. These methods, however, neglect the imbalanced nature of binding site prediction problems. Traditional data-based approaches for handling data imbalance employ linear interpolation of minority class samples. Such approaches may not be fully exploited by deep neural networks on downstream tasks. We present a novel technique for balancing input classes by developing a deep neural network-based variational autoencoder (VAE) that aims to learn important attributes of the minority classes concerning nonlinear combinations. After learning, the trained VAE was used to generate new minority class samples that were later added to the original data to create a balanced dataset. Finally, a convolutional neural network was used for classification, for which we assumed that the nonlinearity could be fully integrated. As a case study, we applied our method to the identification of FAD- and FMN-binding sites of electron transport proteins. Compared with the best classifiers that use traditional machine learning algorithms, our models obtained a great improvement on sensitivity while maintaining similar or higher levels of accuracy and specificity. We also demonstrate that our method is better than other data imbalance handling techniques, such as SMOTE, ADASYN, and class weight adjustment. Additionally, our models also outperform existing predictors in predicting the same binding types. Our method is general and can be applied to other data types for prediction problems with moderate-to-heavy data imbalances.


Subject(s)
Neural Networks, Computer , Algorithms , Deep Learning , Ligands
6.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33539511

ABSTRACT

Recently, language representation models have drawn a lot of attention in the natural language processing field due to their remarkable results. Among them, bidirectional encoder representations from transformers (BERT) has proven to be a simple, yet powerful language model that achieved novel state-of-the-art performance. BERT adopted the concept of contextualized word embedding to capture the semantics and context of the words in which they appeared. In this study, we present a novel technique by incorporating BERT-based multilingual model in bioinformatics to represent the information of DNA sequences. We treated DNA sequences as natural sentences and then used BERT models to transform them into fixed-length numerical matrices. As a case study, we applied our method to DNA enhancer prediction, which is a well-known and challenging problem in this field. We then observed that our BERT-based features improved more than 5-10% in terms of sensitivity, specificity, accuracy and Matthews correlation coefficient compared to the current state-of-the-art features in bioinformatics. Moreover, advanced experiments show that deep learning (as represented by 2D convolutional neural networks; CNN) holds potential in learning BERT features better than other traditional machine learning techniques. In conclusion, we suggest that BERT and 2D CNNs could open a new avenue in biological modeling using sequence information.


Subject(s)
Computational Biology/methods , DNA/genetics , Deep Learning , Enhancer Elements, Genetic , Models, Biological , Natural Language Processing , Computer Simulation , Data Accuracy , Humans , Multilingualism , Semantics , Sensitivity and Specificity , Transcription, Genetic
7.
Proteins ; 90(7): 1486-1492, 2022 07.
Article in English | MEDLINE | ID: mdl-35246878

ABSTRACT

Protein multiple sequence alignment information has long been important features to know about functions of proteins inferred from related sequences with known functions. It is therefore one of the underlying ideas of Alpha fold 2, a breakthrough study and model for the prediction of three-dimensional structures of proteins from their primary sequence. Our study used protein multiple sequence alignment information in the form of position-specific scoring matrices as input. We also refined the use of a convolutional neural network, a well-known deep-learning architecture with impressive achievement on image and image-like data. Specifically, we revisited the study of prediction of adenosine triphosphate (ATP)-binding sites with more efficient convolutional neural networks. We applied multiple convolutional window scanning filters of a convolutional neural network on position-specific scoring matrices for as much as useful information as possible. Furthermore, only the most specific motifs are retained at each feature map output through the one-max pooling layer before going to the next layer. We assumed that this way could help us retain the most conserved motifs which are discriminative information for prediction. Our experiment results show that a convolutional neural network with not too many convolutional layers can be enough to extract the conserved information of proteins, which leads to higher performance. Our best prediction models were obtained after examining them with different hyper-parameters. Our experiment results showed that our models were superior to traditional use of convolutional neural networks on the same datasets as well as other machine-learning classification algorithms.


Subject(s)
Adenosine Triphosphate , Carrier Proteins , Algorithms , Binding Sites , Machine Learning , Neural Networks, Computer , Proteins/chemistry
8.
Plant Mol Biol ; 107(6): 533-542, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34843033

ABSTRACT

KEY MESSAGE: This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-methyladenine sites has been a very active topic of computational biology due to the unavailability of suitable methods to identify them accurately, especially in plants. Substantial results were obtained with a great effort put in extracting, heuristic searching, or fusing a diverse types of features, not to mention a feature selection step. In this study, we regarded DNA sequences as textual information and employed natural language processing techniques to decipher hidden biological meanings from those sequences. In other words, we considered DNA, the human life book, as a book corpus for training DNA language models. K-mer embeddings then were generated from these language models to be used in machine learning prediction models. Skip-gram neural networks were the base of the language models and ensemble tree-based algorithms were the machine learning algorithms for prediction models. We trained the prediction model on Rosaceae genome dataset and performed a comprehensive test on 3 plant genome datasets. Our proposed method shows promising performance with AUC performance approaching an ideal value on Rosaceae dataset (0.99), a high score on Rice dataset (0.95) and improved performance on Rice dataset while enjoying an elegant, yet efficient feature extraction process.


Subject(s)
Adenine/analogs & derivatives , Algorithms , Models, Biological , Neural Networks, Computer , Adenine/metabolism , Base Sequence , DNA, Plant/genetics , Databases, Genetic , Nucleotides/genetics , Plants/genetics , ROC Curve , Surveys and Questionnaires
9.
Anal Biochem ; 633: 114416, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34656612

ABSTRACT

Efflux proteins are the transport proteins expressed in the plasma membrane, which are involved in the movement of unwanted toxic substances through specific efflux pumps. Several studies based on computational approaches have been proposed to predict transport proteins and thereby to understand the mechanism of the movement of ions across cell membranes. However, few methods were developed to identify efflux proteins. This paper presents an approach based on the contextualized word embeddings from Bidirectional Encoder Representations from Transformers (BERT) with the Support Vector Machine (SVM) classifier. BERT is the most effective pre-trained language model that performs exceptionally well on several Natural Language Processing (NLP) tasks. Therefore, the contextualized representations from BERT were implemented to incorporate multiple interpretations of identical amino acids in the sequence. A dataset of efflux proteins with annotations was first established. The feature vectors were extracted by transferring protein data through the hidden layers of the pre-trained model. Our proposed method was trained on complete training datasets to identify efflux proteins and achieved the accuracies of 94.15% and 87.13% in the independent tests on membrane and transport datasets, respectively. This study opens a research avenue for the implementation of contextualized word embeddings in Bioinformatics and Computational Biology.


Subject(s)
Carrier Proteins/analysis , Computational Biology , Natural Language Processing , Support Vector Machine
10.
J Comput Chem ; 40(15): 1521-1529, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30883833

ABSTRACT

The movement of ions across the cell membrane is an essential for many biological processes. This study is focused on ion channels and ion transporters (pumps) as types of border guards control the incessant traffic of ions across cell membranes. Ion channels and ion transporters function to regulate membrane potential and electrical signaling and play important roles in cell proliferation, migration, apoptosis, and differentiation. In their behaviors, it is found that ion channels differ significantly from ion transporters. Therefore, a method for automatically classifying ion transporters and ion channels from membrane proteins is proposed by training deep neural networks and using the position-specific scoring matrix profile as an input. The key of novelty is the three-stage approach, in which five techniques for data normalization are used; next three imbalanced data techniques are applied to the minority classes and then, six classifiers are compared with the proposed method. © 2019 Wiley Periodicals, Inc.


Subject(s)
Deep Learning , Ion Channels/chemistry , Ion Channels/classification , Automation , Humans , Ion Transport
11.
Bioinformatics ; 34(18): 3111-3117, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29668844

ABSTRACT

Motivation: Efflux protein plays a key role in pumping xenobiotics out of the cells. The prediction of efflux family proteins involved in transport process of compounds is crucial for understanding family structures, functions and energy dependencies. Many methods have been proposed to classify efflux pump transporters without considerations of any pump specific of efflux protein families. In other words, efflux proteins protect cells from extrusion of foreign chemicals. Moreover, almost all efflux protein families have the same structure based on the analysis of significant motifs. The motif sequences consisting of the same amount of residues will have high degrees of residue similarity and thus will affect the classification process. Consequently, it is challenging but vital to recognize the structures and determine energy dependencies of efflux protein families. In order to efficiently identify efflux protein families with considering about pump specific, we developed a 2 D convolutional neural network (2 D CNN) model called DeepEfflux. DeepEfflux tried to capture the motifs of sequences around hidden target residues to use as hidden features of families. In addition, the 2 D CNN model uses a position-specific scoring matrix (PSSM) as an input. Three different datasets, each for one family of efflux protein, was fed into DeepEfflux, and then a 5-fold cross validation approach was used to evaluate the training performance. Results: The model evaluation results show that DeepEfflux outperforms traditional machine learning algorithms. Furthermore, the accuracy of 96.02%, 94.89% and 90.34% for classes A, B and C, respectively, in the independent test results show that our model can perform well and can be used as a reliable tool for identifying families of efflux proteins in transporters. Availability and implementation: The online version of deepefflux is available at http://deepefflux.irit.fr. The source code of deepefflux is available both on the deepefflux website and at http://140.138.155.216/deepefflux/. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins/chemistry , Algorithms , Machine Learning , Neural Networks, Computer , Position-Specific Scoring Matrices , Protein Transport , Proteins/metabolism , Software
12.
Anal Biochem ; 575: 17-26, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30930199

ABSTRACT

Motor proteins are the driving force behind muscle contraction and are responsible for the active transportation of most proteins and vesicles in the cytoplasm. There are three superfamilies of cytoskeletal motor proteins with various molecular functions and structures: dynein, kinesin, and myosin. The functional loss of a specific motor protein molecular function has linked to a variety of human diseases, e.g., Charcot-Marie-Tooth disease, kidney disease. Therefore, creating a precise model to classify motor proteins is essential for helping biologists understand their molecular functions and design drug targets according to their impact on human diseases. Here we attempt to classify cytoskeleton motor proteins using deep learning, which has been increasingly and widely used to address numerous problems in a variety of fields resulting in state-of-the-art results. Our effective deep convolutional neural network is able to achieve an independent test accuracy of 97.5%, 96.4%, and 96.1% for each superfamily, respectively. Compared to other state-of-the-art methods, our approach showed a significant improvement in performance across a range of evaluation metrics. Through the proposed study, we provide an effective model for classifying motor proteins and a basis for further research that can enhance the performance of protein function classification using deep learning.


Subject(s)
Cytoskeletal Proteins/physiology , Molecular Motor Proteins/physiology , Neural Networks, Computer , Algorithms , Humans , Machine Learning
13.
Anal Biochem ; 571: 53-61, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30822398

ABSTRACT

An enhancer is a short (50-1500bp) region of DNA that plays an important role in gene expression and the production of RNA and proteins. Genetic variation in enhancers has been linked to many human diseases, such as cancer, disorder or inflammatory bowel disease. Due to the importance of enhancers in genomics, the classification of enhancers has become a popular area of research in computational biology. Despite the few computational tools employed to address this problem, their resulting performance still requires improvements. In this study, we treat enhancers by the word embeddings, including sub-word information of its biological words, which then serve as features to be fed into a support vector machine algorithm to classify them. We present iEnhancer-5Step, a web server containing two-layer classifiers to identify enhancers and their strength. We are able to attain an independent test accuracy of 79% and 63.5% in the two layers, respectively. Compared to current predictors on the same dataset, our proposed method is able to yield superior performance as compared to the other methods. Moreover, this study provides a basis for further research that can enrich the field of applying natural language processing techniques in biological sequences. iEnhancer-5Step is freely accessible via http://biologydeep.com/fastenc/.


Subject(s)
Computational Biology , DNA/genetics , Enhancer Elements, Genetic/genetics , Support Vector Machine , Humans , Sequence Analysis, DNA
14.
Anal Biochem ; 577: 73-81, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31022378

ABSTRACT

Membrane transport proteins and their substrate specificities play crucial roles in various cellular functions. Identifying the substrate specificities of membrane transport proteins is closely related to protein-target interaction prediction, drug design, membrane recruitment, and dysregulation analysis, thus being an important problem for bioinformatics researchers. In this study, we applied word embedding approach, the main cause for natural language processing breakout in recent years, to protein sequences of transporters. We defined each protein sequence based on the word embeddings and frequencies of its biological words. The protein features were then fed into machine learning models for prediction. We also varied the lengths of protein sequence's constituent biological words to find the optimal length which generated the most discriminative feature set. Compared to four other feature types created from protein sequences, our proposed features can help prediction models yield superior performance. Our best models reach an average area under the curve of 0.96 and 0.99, respectively on the 5-fold cross validation and the independent test. With this result, our study can help biologists identify transporters based on substrate specificities as well as provides a basis for further research that enriches a field of applying natural language processing techniques in bioinformatics.


Subject(s)
Computational Biology/methods , Membrane Transport Proteins/chemistry , Amino Acid Sequence , Humans , Natural Language Processing , Substrate Specificity , Support Vector Machine
15.
Anal Biochem ; 555: 33-41, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29908156

ABSTRACT

Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks.


Subject(s)
Cell Membrane/metabolism , Choroideremia/metabolism , Intellectual Disability/metabolism , Machine Learning , Models, Biological , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neural Networks, Computer , rab GTP-Binding Proteins/metabolism , Humans , Protein Transport
16.
J Comput Chem ; 38(23): 2000-2006, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28643394

ABSTRACT

In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc.

17.
BMC Bioinformatics ; 17: 298, 2016 Jul 30.
Article in English | MEDLINE | ID: mdl-27475771

ABSTRACT

BACKGROUND: Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. RESULTS: We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. CONCLUSIONS: We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also developed a web server which identifies FAD binding sites in electron transporters available for academics.


Subject(s)
Electron Transport Chain Complex Proteins/metabolism , Flavin-Adenine Dinucleotide/metabolism , Algorithms , Amino Acid Sequence , Amino Acids/chemistry , Area Under Curve , Binding Sites , Electron Transport Chain Complex Proteins/chemistry , Flavin-Adenine Dinucleotide/chemistry , Internet , Protein Binding , ROC Curve , User-Computer Interface
18.
BMC Bioinformatics ; 17(Suppl 19): 501, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28155651

ABSTRACT

BACKGROUND: Guanonine-protein (G-protein) is known as molecular switches inside cells, and is very important in signals transmission from outside to inside cell. Especially in transport protein, most of G-proteins play an important role in membrane trafficking; necessary for transferring proteins and other molecules to a variety of destinations outside and inside of the cell. The function of membrane trafficking is controlled by G-proteins via Guanosine triphosphate (GTP) binding sites. The GTP binding sites active G-proteins initiated to membrane vesicles by interacting with specific effector proteins. Without the interaction from GTP binding sites, G-proteins could not be active in membrane trafficking and consequently cause many diseases, i.e., cancer, Parkinson… Thus it is very important to identify GTP binding sites in membrane trafficking, in particular, and in transport protein, in general. RESULTS: We developed the proposed model with a cross-validation and examined with an independent dataset. We achieved an accuracy of 95.6% for evaluating with cross-validation and 98.7% for examining the performance with the independent data set. For newly discovered transport protein sequences, our approach performed remarkably better than similar methods such as GTPBinder, NsitePred and TargetSOS. Moreover, a friendly web server was developed for identifying GTP binding sites in transport proteins available for all users. CONCLUSIONS: We approached a computational technique using PSSM profiles and SAAPs for identifying GTP binding residues in transport proteins. When we included SAAPs into PSSM profiles, the predictive performance achieved a significant improvement in all measurement metrics. Furthermore, the proposed method could be a power tool for determining new proteins that belongs into GTP binding sites in transport proteins and can provide useful information for biologists.


Subject(s)
Amino Acids/metabolism , Carrier Proteins/metabolism , Guanosine Triphosphate/metabolism , Models, Theoretical , Amino Acid Sequence , Amino Acids/chemistry , Binding Sites , Carrier Proteins/chemistry , Guanosine Triphosphate/chemistry , Humans , Protein Binding , ROC Curve
19.
Brief Bioinform ; 15(2): 155-68, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23524979

ABSTRACT

Membrane proteins perform diverse functions in living organisms such as transporters, receptors and channels. The functions of membrane proteins have been investigated with several computational approaches, such as developing databases, analyzing the structure-function relationship and establishing algorithms to discriminate different type of membrane proteins. However, compilation of bioinformatics resources for the functions of membrane proteins is not well documented compared with their structural aspects. In this comprehensive review, we elaborately focus on three aspects of membrane protein functions: (i) databases for different types of membrane proteins based on their functions including transporters, receptors and ion channels, annotated functional data for genomes, as well as functionally important amino acid residues in membrane proteins obtained from experimental data, (ii) analysis of membrane protein functions based on their structures, motifs, amino acid properties and other features and (iii) algorithms for discriminating different types of membrane proteins and annotating them in genomic sequences. In addition, we provide a list of online resources for the databases and web servers for functional annotation of membrane proteins.


Subject(s)
Computational Biology/methods , Membrane Proteins/genetics , Molecular Sequence Annotation/methods , Algorithms , Databases, Protein/statistics & numerical data , Humans , Ion Channels/classification , Ion Channels/genetics , Ion Channels/physiology , Membrane Proteins/classification , Membrane Proteins/physiology , Membrane Transport Proteins/classification , Membrane Transport Proteins/genetics , Membrane Transport Proteins/physiology , Protein Processing, Post-Translational , Receptors, Cell Surface/classification , Receptors, Cell Surface/genetics , Receptors, Cell Surface/physiology
20.
J Mol Biol ; 436(22): 168769, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214282

ABSTRACT

Deciphering the mechanisms governing protein-DNA interactions is crucial for understanding key cellular processes and disease pathways. In this work, we present a powerful deep learning approach that significantly advances the computational prediction of DNA-interacting residues from protein sequences. Our method leverages the rich contextual representations learned by pre-trained protein language models, such as ProtTrans, to capture intrinsic biochemical properties and sequence motifs indicative of DNA binding sites. We then integrate these contextual embeddings with a multi-window convolutional neural network architecture, which scans across the sequence at varying window sizes to effectively identify both local and global binding patterns. Comprehensive evaluation on curated benchmark datasets demonstrates the remarkable performance of our approach, achieving an area under the ROC curve (AUC) of 0.89 - a substantial improvement over previous state-of-the-art sequence-based predictors. This showcases the immense potential of pairing advanced representation learning and deep neural network designs for uncovering the complex syntax governing protein-DNA interactions directly from primary sequences. Our work not only provides a robust computational tool for characterizing DNA-binding mechanisms, but also highlights the transformative opportunities at the intersection of language modeling, deep learning, and protein sequence analysis. The publicly available code and data further facilitate broader adoption and continued development of these techniques for accelerating mechanistic insights into vital biological processes and disease pathways. In addition, the code and data for this work are available at https://github.com/B1607/DIRP.

SELECTION OF CITATIONS
SEARCH DETAIL