ABSTRACT
Cyanobacteria, particularly thermophilic strains, represent an important potential source of EPSs, harboring structural complexity that predicts diverse and specific bioactive potential. The thermophilic cyanobacteria Gloeocapsa gelatinosa, isolated from a natural hot source in Ain Echfa (Tunisia), was cultivated in a cylindrical reactor, and the production of biomass and EPSs was investigated. Results revealed that the strain is amongst the most efficient EPSs producers (0.89 g L-1) and that EPSs production was not correlated with the growth phase. EPSs were sulfated heteropolysaccharides containing carbohydrates (70%) based on nine different monosaccharides, mainly mannose (22%), and with the presence of two uronic acids. EPSs were formed by two polymers moieties with a molecular weight of 598.3 ± 7.2 and 67.2 ± 4.4 kDa. They are thermostable in temperatures exceeding 100 °C and have an anionic nature (zeta potential of -40 ± 2 mV). Atomic force microscopy showed that EPSs formed multimodal lumps with 88 nm maximum height. EPSs presented high water holding capacity (70.29 ± 2.36%) and solubility index (97.43 ± 1.24%), and a strong bivalent metal sorption capacity especially for Cu2+ (91.20 ± 1.25%) and Fe2+ (75.51 ± 0.71%). The antioxidant activity of G. gelatinosa EPSs was investigated using four methods: the ß-carotene-bleaching activity, DPPH assays, iron-reducing activity, and metal-chelating activity. EPS has shown high potential as free radicals' scavenger, with an IC50 on DPPH (0.2 g L-1) three-fold lower than ascorbic acid (0.6 g L -1) and as a metal chelating activity (IC50 = 0.4 g L-1) significantly lower than EDTA. The obtained results allow further exploration of the thermophilic G. gelatinosa for several biotechnological and industrial applications.
Subject(s)
Cyanobacteria , Extracellular Polymeric Substance Matrix , Antioxidants/pharmacology , Polysaccharides, Bacterial/chemistry , Uronic AcidsABSTRACT
Tunisian microalgae are diverse and rarely been studied. This study reports a first investigation of thermophile Chlorophyta isolated from mats community colonizing the geothermal springs in the north of Tunisia at water temperature 60 °C. In the study, the combined effect of temperature and light intensity was investigated on the cell growth, the mother and daughter cells abundance and the extracellular polymeric substances synthesis in batch culture of the isolated species. Three levels were tested for each factor, 20, 30, 40 °C for temperature; and 20, 70, 120 µmol photons m(-2) s(-1) for light intensity, using full factorial design and response surface methodology. The thermophile strain was identified as a genus Graesiella and showed 99.8% similarity with two Graesiella species: Graesiella emersonii and Graesiella vacuolata based on the 18S rDNA molecular identification. The optimal growth condition was found at 30 °C and 120 µmol photons m(-2) s(-1) (7 MC mL(-1) day(-1)), with the abundance of vegetative cells (daughter cells). In contrast, the number of mother cells increased significantly as the growth decreased; consequently, the highest ratio of auto spore mother cells versus daughter cells (19.4) was obtained at 20 °C and 20 µmol photons m(-2) s(-1). The highest yield of EPS production (11.7 mg L(-1) day(-1)) was recorded at the highest temperature (40 °C) and lowest light intensity (20 µmol photons m(-2)s(-1)). These results revealed how the species respond to high and low temperatures and suggest that the species should be considered as facultative thermophile.
Subject(s)
Biopolymers/biosynthesis , Chlorophyta/growth & development , Chlorophyta/metabolism , Microalgae/growth & development , Microalgae/metabolism , Base Sequence , Chlorophyta/genetics , DNA, Algal/genetics , Hot Springs/microbiology , Kinetics , Light , Microalgae/isolation & purification , Models, Biological , Temperature , TunisiaABSTRACT
The interactive effects of light intensity and NaCl concentration were investigated for Spirulina two-step cultivation process using Full Factorial Design. In the experiment interval, light intensity had no effect while the NaCl concentration had significant effect on the enhancement of extracellular polymeric substances (EPS) production. Interestingly, results revealed a significant negative interaction between light and NaCl concentration indicating that high NaCl concentration (40gL-1) and low light intensity (10µmol photons m-2s-1) enhanced the EPS production. Under these conditions, EPS production reached a maximum of 1.02gg-1 of biomass (dry weight), which is 1.67-folds greater than EPS content under optimal growth conditions (10µmol photons m-2s-1, 1gL-1, 30°C). Desalting and deproteinezation steps of EPS were efficient to obtain polysaccharides (PS) with high carbohydrate (67.3±1.1%), low soluble proteins (5.14±0.32%), ash (5.85±0.71%) and sulfate (2.42±0.12%) contents. Rheological studies of PS at different concentrations (1%, 2.5% and 5%) revealed that the viscosity of the solution increased with the increase of PS concentration. In addition, PS exhibited a non Newtonian shear-thinning nature, a predominant gel-like behavior and a good resistance to consecutive heating-cooling cycles. The adopted process could be, then, a promising and economic strategy to enhance EPS production and extract polysaccharides with interesting rheological properties.