Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
Add more filters

Publication year range
1.
Eur Radiol ; 34(3): 1877-1892, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37646809

ABSTRACT

OBJECTIVES: Multiple lung cancer screening studies reported the performance of Lung CT Screening Reporting and Data System (Lung-RADS), but none systematically evaluated its performance across different populations. This systematic review and meta-analysis aimed to evaluate the performance of Lung-RADS (versions 1.0 and 1.1) for detecting lung cancer in different populations. METHODS: We performed literature searches in PubMed, Web of Science, Cochrane Library, and Embase databases on October 21, 2022, for studies that evaluated the accuracy of Lung-RADS in lung cancer screening. A bivariate random-effects model was used to estimate pooled sensitivity and specificity, and heterogeneity was explored in stratified and meta-regression analyses. RESULTS: A total of 31 studies with 104,224 participants were included. For version 1.0 (27 studies, 95,413 individuals), pooled sensitivity was 0.96 (95% confidence interval [CI]: 0.90-0.99) and pooled specificity was 0.90 (95% CI: 0.87-0.92). Studies in high-risk populations showed higher sensitivity (0.98 [95% CI: 0.92-0.99] vs. 0.84 [95% CI: 0.50-0.96]) and lower specificity (0.87 [95% CI: 0.85-0.88] vs. 0.95 (95% CI: 0.92-0.97]) than studies in general populations. Non-Asian studies tended toward higher sensitivity (0.97 [95% CI: 0.91-0.99] vs. 0.91 [95% CI: 0.67-0.98]) and lower specificity (0.88 [95% CI: 0.85-0.90] vs. 0.93 [95% CI: 0.88-0.96]) than Asian studies. For version 1.1 (4 studies, 8811 individuals), pooled sensitivity was 0.91 (95% CI: 0.83-0.96) and specificity was 0.81 (95% CI: 0.67-0.90). CONCLUSION: Among studies using Lung-RADS version 1.0, considerable heterogeneity in sensitivity and specificity was noted, explained by population type (high risk vs. general), population area (Asia vs. non-Asia), and cancer prevalence. CLINICAL RELEVANCE STATEMENT: Meta-regression of lung cancer screening studies using Lung-RADS version 1.0 showed considerable heterogeneity in sensitivity and specificity, explained by the different target populations, including high-risk versus general populations, Asian versus non-Asian populations, and populations with different lung cancer prevalence. KEY POINTS: • High-risk population studies showed higher sensitivity and lower specificity compared with studies performed in general populations by using Lung-RADS version 1.0. • In non-Asian studies, the diagnostic performance of Lung-RADS version 1.0 tended to be better than in Asian studies. • There are limited studies on the performance of Lung-RADS version 1.1, and evidence is lacking for Asian populations.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer , Lung/diagnostic imaging , Sensitivity and Specificity
2.
Eur Radiol ; 34(3): 2084-2092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658141

ABSTRACT

OBJECTIVES: To develop a deep learning-based method for contrast-enhanced breast lesion detection in ultrafast screening MRI. MATERIALS AND METHODS: A total of 837 breast MRI exams of 488 consecutive patients were included. Lesion's location was independently annotated in the maximum intensity projection (MIP) image of the last time-resolved angiography with stochastic trajectories (TWIST) sequence for each individual breast, resulting in 265 lesions (190 benign, 75 malignant) in 163 breasts (133 women). YOLOv5 models were fine-tuned using training sets containing the same number of MIP images with and without lesions. A long short-term memory (LSTM) network was employed to help reduce false positive predictions. The integrated system was then evaluated on test sets containing enriched uninvolved breasts during cross-validation to mimic the performance in a screening scenario. RESULTS: In five-fold cross-validation, the YOLOv5x model showed a sensitivity of 0.95, 0.97, 0.98, and 0.99, with 0.125, 0.25, 0.5, and 1 false positive per breast, respectively. The LSTM network reduced 15.5% of the false positive prediction from the YOLO model, and the positive predictive value was increased from 0.22 to 0.25. CONCLUSIONS: A fine-tuned YOLOv5x model can detect breast lesions on ultrafast MRI with high sensitivity in a screening population, and the output of the model could be further refined by an LSTM network to reduce the amount of false positive predictions. CLINICAL RELEVANCE STATEMENT: The proposed integrated system would make the ultrafast MRI screening process more effective by assisting radiologists in prioritizing suspicious examinations and supporting the diagnostic workup. KEY POINTS: • Deep convolutional neural networks could be utilized to automatically pinpoint breast lesions in screening MRI with high sensitivity. • False positive predictions significantly increased when the detection models were tested on highly unbalanced test sets with more normal scans. • Dynamic enhancement patterns of breast lesions during contrast inflow learned by the long short-term memory networks helped to reduce false positive predictions.


Subject(s)
Breast Neoplasms , Contrast Media , Female , Humans , Contrast Media/pharmacology , Breast/pathology , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Time , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology
3.
N Engl J Med ; 382(6): 503-513, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31995683

ABSTRACT

BACKGROUND: There are limited data from randomized trials regarding whether volume-based, low-dose computed tomographic (CT) screening can reduce lung-cancer mortality among male former and current smokers. METHODS: A total of 13,195 men (primary analysis) and 2594 women (subgroup analyses) between the ages of 50 and 74 were randomly assigned to undergo CT screening at T0 (baseline), year 1, year 3, and year 5.5 or no screening. We obtained data on cancer diagnosis and the date and cause of death through linkages with national registries in the Netherlands and Belgium, and a review committee confirmed lung cancer as the cause of death when possible. A minimum follow-up of 10 years until December 31, 2015, was completed for all participants. RESULTS: Among men, the average adherence to CT screening was 90.0%. On average, 9.2% of the screened participants underwent at least one additional CT scan (initially indeterminate). The overall referral rate for suspicious nodules was 2.1%. At 10 years of follow-up, the incidence of lung cancer was 5.58 cases per 1000 person-years in the screening group and 4.91 cases per 1000 person-years in the control group; lung-cancer mortality was 2.50 deaths per 1000 person-years and 3.30 deaths per 1000 person-years, respectively. The cumulative rate ratio for death from lung cancer at 10 years was 0.76 (95% confidence interval [CI], 0.61 to 0.94; P = 0.01) in the screening group as compared with the control group, similar to the values at years 8 and 9. Among women, the rate ratio was 0.67 (95% CI, 0.38 to 1.14) at 10 years of follow-up, with values of 0.41 to 0.52 in years 7 through 9. CONCLUSIONS: In this trial involving high-risk persons, lung-cancer mortality was significantly lower among those who underwent volume CT screening than among those who underwent no screening. There were low rates of follow-up procedures for results suggestive of lung cancer. (Funded by the Netherlands Organization of Health Research and Development and others; NELSON Netherlands Trial Register number, NL580.).


Subject(s)
Cone-Beam Computed Tomography , Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/mortality , Aged , Belgium/epidemiology , False Positive Reactions , Female , Humans , Incidence , Lung Neoplasms/epidemiology , Male , Medical Overuse , Middle Aged , Netherlands/epidemiology , Registries , Sex Factors , Smoking/epidemiology
4.
Eur Respir J ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202154

ABSTRACT

Screening for lung cancer with low radiation dose computed tomography (LDCT) has a strong evidence base. The European Council adopted a recommendation in November 2022 that lung cancer screening be implemented using a stepwise approach. The imperative now is to ensure that implementation follows an evidence-based process that delivers clinical and cost effectiveness. This ERS Taskforce was formed to provide a technical standard for a high-quality lung cancer screening program. METHOD: A collaborative group was convened to include members of multiple European societies (see below). Topics were identified during a scoping review and a systematic review of the literature was conducted. Full text was provided to members of the group for each topic. The final document was approved by all members and the ERS Scientific Advisory Committee. RESULTS: Ten topics were identified representing key components of a screening program. The action on findings from the LDCT were not included as they are addressed by separate international guidelines (nodule management and clinical management of lung cancer) and by a linked taskforce (incidental findings). Other than smoking cessation, other interventions that are not part of the core screening process were not included (e.g. pulmonary function measurement). Fifty-three statements were produced and areas for further research identified. CONCLUSION: This European collaborative group has produced a technical standard that is a timely contribution to implementation of LCS. It will serve as a standard that can be used, as recommended by the European Council, to ensure a high quality and effective program.

5.
J Magn Reson Imaging ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37846440

ABSTRACT

BACKGROUND: Accurate breast density evaluation allows for more precise risk estimation but suffers from high inter-observer variability. PURPOSE: To evaluate the feasibility of reducing inter-observer variability of breast density assessment through artificial intelligence (AI) assisted interpretation. STUDY TYPE: Retrospective. POPULATION: Six hundred and twenty-one patients without breast prosthesis or reconstructions were randomly divided into training (N = 377), validation (N = 98), and independent test (N = 146) datasets. FIELD STRENGTH/SEQUENCE: 1.5 T and 3.0 T; T1-weighted spectral attenuated inversion recovery. ASSESSMENT: Five radiologists independently assessed each scan in the independent test set to establish the inter-observer variability baseline and to reach a reference standard. Deep learning and three radiomics models were developed for three classification tasks: (i) four Breast Imaging-Reporting and Data System (BI-RADS) breast composition categories (A-D), (ii) dense (categories C, D) vs. non-dense (categories A, B), and (iii) extremely dense (category D) vs. moderately dense (categories A-C). The models were tested against the reference standard on the independent test set. AI-assisted interpretation was performed by majority voting between the models and each radiologist's assessment. STATISTICAL TESTS: Inter-observer variability was assessed using linear-weighted kappa (κ) statistics. Kappa statistics, accuracy, and area under the receiver operating characteristic curve (AUC) were used to assess models against reference standard. RESULTS: In the independent test set, five readers showed an overall substantial agreement on tasks (i) and (ii), but moderate agreement for task (iii). The best-performing model showed substantial agreement with reference standard for tasks (i) and (ii), but moderate agreement for task (iii). With the assistance of the AI models, almost perfect inter-observer variability was obtained for tasks (i) (mean κ = 0.86), (ii) (mean κ = 0.94), and (iii) (mean κ = 0.94). DATA CONCLUSION: Deep learning and radiomics models have the potential to help reduce inter-observer variability of breast density assessment. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1.

6.
Eur Radiol ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008743

ABSTRACT

OBJECTIVES: To compare image quality of diffusion-weighted imaging (DWI) and contrast-enhanced breast MRI (DCE-T1) stratified by the amount of fibroglandular tissue (FGT) as a measure of breast density. METHODS: Retrospective, multi-reader, bicentric visual grading analysis study on breast density (A-D) and overall image and fat suppression quality of DWI and DCE-T1, scored on a standard 5-point Likert scale. Cross tabulations and visual grading characteristic (VGC) curves were calculated for fatty breasts (A/B) versus dense breasts (C/D). RESULTS: Image quality of DWI was higher in the case of increased breast density, with good scores (score 3-5) in 85.9% (D) and 88.4% (C), compared to 61.6% (B) and 53.5% (A). Overall image quality of DWI was in favor of dense breasts (C/D), with an area under the VGC curve of 0.659 (p < 0.001). Quality of DWI and DCE-T1 fat suppression increased with higher breast density, with good scores (score 3-5) for 86.9% and 45.7% of density D, and 90.2% and 42.9% of density C cases, compared to 76.0% and 33.6% for density B and 54.7% and 29.6% for density A (DWI and DCE-T1 respectively). CONCLUSIONS: Dense breasts show excellent fat suppression and substantially higher image quality in DWI images compared with non-dense breasts. These results support the setup of studies exploring DWI-based MR imaging without IV contrast for additional screening of women with dense breasts. CLINICAL RELEVANCE STATEMENT: Our findings demonstrate that image quality of DWI is robust in women with an increased amount of fibroglandular tissue, technically supporting the feasibility of exploring applications such as screening of women with mammographically dense breasts. KEY POINTS: • Image and fat suppression quality of diffusion-weighted imaging are dependent on the amount of fibroglandular tissue (FGT) which is closely connected to breast density. • Fat suppression quality in diffusion-weighted imaging of the breast is best in women with a high amount of fibroglandular tissue. • High image quality of diffusion-weighted imaging in women with a high amount of FGT in MRI supports that the technical feasibility of DWI can be explored in the additional screening of women with mammographically dense breasts.

7.
J Intern Med ; 292(1): 68-80, 2022 07.
Article in English | MEDLINE | ID: mdl-35253286

ABSTRACT

Lung cancer causes more deaths than breast, cervical, and colorectal cancer combined. Nevertheless, population-based lung cancer screening is still not considered standard practice in most countries worldwide. Early lung cancer detection leads to better survival outcomes: patients diagnosed with stage 1A lung cancer have a >75% 5-year survival rate, compared to <5% at stage 4. Low-dose computed tomography (LDCT) thorax imaging for the secondary prevention of lung cancer has been studied at length, and has been shown to significantly reduce lung cancer mortality in high-risk populations. The US National Lung Screening Trial reported a 20% overall reduction in lung cancer mortality when comparing LDCT to chest X-ray, and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) trial more recently reported a 24% reduction when comparing LDCT to no screening. Hence, the focus has now shifted to implementation research. Consequently, the 4-IN-THE-LUNG-RUN consortium based in five European countries, has set up a large-scale multicenter implementation trial. Successful implementation of and accessibility to LDCT lung cancer screening are dependent on many factors, not limited to population selection, recruitment strategy, computed tomography screening frequency, lung-nodule management, participant compliance, and cost effectiveness. This review provides an overview of current evidence for LDCT lung cancer screening, and draws attention to major factors that need to be addressed to successfully implement standardized, effective, and accessible screening throughout Europe. Evidence shows that through the appropriate use of risk-prediction models and a more personalized approach to screening, efficacy could be improved. Furthermore, extending the screening interval for low-risk individuals to reduce costs and associated harms is a possibility, and through the use of volumetric-based measurement and follow-up, false positive results can be greatly reduced. Finally, smoking cessation programs could be a valuable addition to screening programs and artificial intelligence could offer a solution to the added workload pressures radiologists are facing.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Artificial Intelligence , Early Detection of Cancer/methods , Humans , Lung Neoplasms/diagnostic imaging , Mass Screening/methods , Multicenter Studies as Topic , Tomography, X-Ray Computed/methods
8.
Am Heart J ; 246: 166-177, 2022 04.
Article in English | MEDLINE | ID: mdl-35038412

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) burden for society is expected to steeply increase over the next decade. Improved feasibility and efficiency of preventive strategies is necessary to flatten the curve. Acute myocardial infarction (AMI) is the main determinant of CAD-related mortality and morbidity, and predominantly occurs in individuals with more advanced stages of CAD causing subclinical myocardial ischemia (obstructive CAD; OCAD). Unfortunately, OCAD can remain subclinical until its destructive presentation with AMI or sudden death. Current primary preventive strategies are not designed to differentiate between non-OCAD and OCAD and the opportunity is missed to treat individuals with OCAD more aggressively. METHODS: EARLY-SYNERGY is a multicenter, randomized-controlled clinical trial in individuals with coronary artery calcium (CAC) presence to study (1.) the yield of cardiac magnetic resonance stress myocardial perfusion imaging (CMR-MPI) for early OCAD diagnosis and (2) whether early OCAD diagnosis improves outcomes. Individuals with CAC score ≥300 objectified in 2 population-based trials (ROBINSCA; ImaLife) are recruited for study participation. Eligible candidates are randomized 1:1 to cardiac magnetic resonance stress myocardial perfusion imaging (CMR-MPI) or no additional functional imaging. In the CMR-MPI arm, feedback on imaging results is provided to primary care provider and participant in case of guideline-based actionable findings. Participants are followed-up for clinical events, healthcare utilization and quality of life. CONCLUSIONS: EARLY-SYNERGY is the first randomized-controlled clinical trial designed to test the hypothesis that subclinical OCAD is widely present in the general at-risk population and that early differentiation of OCAD from non-OCAD followed by guideline-recommended treatment improves outcomes.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Perfusion Imaging , Coronary Angiography/methods , Coronary Artery Disease/epidemiology , Heart , Humans , Myocardial Perfusion Imaging/methods , Quality of Life , Risk Factors
9.
Eur Radiol ; 32(12): 8706-8715, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35614363

ABSTRACT

OBJECTIVES: To investigate the feasibility of automatically identifying normal scans in ultrafast breast MRI with artificial intelligence (AI) to increase efficiency and reduce workload. METHODS: In this retrospective analysis, 837 breast MRI examinations performed on 438 women from April 2016 to October 2019 were included. The left and right breasts in each examination were labelled normal (without suspicious lesions) or abnormal (with suspicious lesions) based on final interpretation. Maximum intensity projection (MIP) images of each breast were then used to train a deep learning model. A high sensitivity threshold was calculated based on the detection trade - off (DET) curve on the validation set. The performance of the model was evaluated by receiver operating characteristic analysis of the independent test set. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with the high sensitivity threshold were calculated. RESULTS: The independent test set consisted of 178 examinations of 149 patients (mean age, 44 years ± 14 [standard deviation]). The trained model achieved an AUC of 0.81 (95% CI: 0.75-0.88) on the independent test set. Applying a threshold of 0.25 yielded a sensitivity of 98% (95% CI: 90%; 100%), an NPV of 98% (95% CI: 89%; 100%), a workload reduction of 15.7%, and a scan time reduction of 16.6%. CONCLUSION: This deep learning model has a high potential to help identify normal scans in ultrafast breast MRI and thereby reduce radiologists' workload and scan time. KEY POINTS: • Deep learning in TWIST may eliminate the necessity of additional sequences for identifying normal breasts during MRI screening. • Workload and scanning time reductions of 15.7% and 16.6%, respectively, could be achieved with the cost of 1 (1 of 55) false negative prediction.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Adult , Artificial Intelligence , Retrospective Studies , Breast/diagnostic imaging , Breast/pathology , Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology
10.
Eur Radiol ; 32(9): 6384-6396, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35362751

ABSTRACT

OBJECTIVE: To develop an automatic COVID-19 Reporting and Data System (CO-RADS)-based classification in a multi-demographic setting. METHODS: This multi-institutional review boards-approved retrospective study included 2720 chest CT scans (mean age, 58 years [range 18-100 years]) from Italian and Russian patients. Three board-certified radiologists from three countries assessed randomly selected subcohorts from each population and provided CO-RADS-based annotations. CT radiomic features were extracted from the selected subcohorts after preprocessing steps like lung lobe segmentation and automatic noise reduction. We compared three machine learning models, logistic regression (LR), multilayer perceptron (MLP), and random forest (RF) for the automated CO-RADS classification. Model evaluation was carried out in two scenarios, first, training on a mixed multi-demographic subcohort and testing on an independent hold-out dataset. In the second scenario, training was done on a single demography and externally validated on the other demography. RESULTS: The overall inter-observer agreement for the CO-RADS scoring between the radiologists was substantial (k = 0.80). Irrespective of the type of validation test scenario, suspected COVID-19 CT scans were identified with an accuracy of 84%. SHapley Additive exPlanations (SHAP) interpretation showed that the "wavelet_(LH)_GLCM_Imc1" feature had a positive impact on COVID prediction both with and without noise reduction. The application of noise reduction improved the overall performance between the classifiers for all types. CONCLUSION: Using an automated model based on the COVID-19 Reporting and Data System (CO-RADS), we achieved clinically acceptable performance in a multi-demographic setting. This approach can serve as a standardized tool for automated COVID-19 assessment. KEYPOINTS: • Automatic CO-RADS scoring of large-scale multi-demographic chest CTs with mean AUC of 0.93 ± 0.04. • Validation procedure resembles TRIPOD 2b and 3 categories, enhancing the quality of experimental design to test the cross-dataset domain shift between institutions aiding clinical integration. • Identification of COVID-19 pneumonia in the presence of community-acquired pneumonia and other comorbidities with an AUC of 0.92.


Subject(s)
COVID-19 , Pneumonia , Adolescent , Adult , Aged , Aged, 80 and over , Demography , Humans , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Young Adult
11.
MAGMA ; 35(5): 749-763, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35437686

ABSTRACT

OBJECTIVES: This study aimed at evaluating left ventricular myocardial pixel-wise T2* using two truncation methods for different iron deposition T2* ranges and comparison of segmental T2* in different coronary artery territories. MATERIAL AND METHODS: Bright blood multi-gradient echo data of 30 patients were quantified by pixel-wise monoexponential T2* fitting with its R2 and SNR truncation. T2* was analyzed at different iron classifications. At low iron classification, T2* values were also analyzed by coronary artery territories. RESULTS: The right coronary artery has a significantly higher T2* value than the other coronary artery territories. No significant difference was found in classifying severe iron by the two truncation methods in any myocardial region, whereas in moderate iron, it is only apparent at septal segments. The R2 truncation produces a significantly higher T2* value than the SNR method when low iron is indicated. CONCLUSION: Clear T2* differentiation between the three coronary territories by the two truncation methods is demonstrated. The two truncation methods can be used interchangeably in classifying severe and moderate iron deposition at the recommended septal region. However, in patients with low iron indication, different results by the two truncation methods can mislead the investigation of early iron level progression.


Subject(s)
Coronary Vessels , Iron Overload , Coronary Vessels/diagnostic imaging , Heart Ventricles/diagnostic imaging , Humans , Iron , Magnetic Resonance Imaging/methods , Myocardium
12.
J Digit Imaging ; 35(3): 538-550, 2022 06.
Article in English | MEDLINE | ID: mdl-35182291

ABSTRACT

The objective of this study is to evaluate the feasibility of a disease-specific deep learning (DL) model based on minimum intensity projection (minIP) for automated emphysema detection in low-dose computed tomography (LDCT) scans. LDCT scans of 240 individuals from a population-based cohort in the Netherlands (ImaLife study, mean age ± SD = 57 ± 6 years) were retrospectively chosen for training and internal validation of the DL model. For independent testing, LDCT scans of 125 individuals from a lung cancer screening cohort in the USA (NLST study, mean age ± SD = 64 ± 5 years) were used. Dichotomous emphysema diagnosis based on radiologists' annotation was used to develop the model. The automated model included minIP processing (slab thickness range: 1 mm to 11 mm), classification, and detection maps generation. The data-split for the pipeline evaluation involved class-balanced and imbalanced settings. The proposed DL pipeline showed the highest performance (area under receiver operating characteristics curve) for 11 mm slab thickness in both the balanced (ImaLife = 0.90 ± 0.05) and the imbalanced dataset (NLST = 0.77 ± 0.06). For ImaLife subcohort, the variation in minIP slab thickness from 1 to 11 mm increased the DL model's sensitivity from 75 to 88% and decreased the number of false-negative predictions from 10 to 5. The minIP-based DL model can automatically detect emphysema in LDCTs. The performance of thicker minIP slabs was better than that of thinner slabs. LDCT can be leveraged for emphysema detection by applying disease specific augmentation.


Subject(s)
Emphysema , Pulmonary Emphysema , Tomography, X-Ray Computed , Artificial Intelligence , Emphysema/diagnostic imaging , Humans , Pulmonary Emphysema/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods
13.
Eur Radiol ; 31(6): 4023-4030, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33269413

ABSTRACT

OBJECTIVES: To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN). METHODS: Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were classified into subtypes, including "typical PFNs" on-site, and were reviewed by a central clinician. The dataset was divided into a training/cross-validation set of 1557 nodules (1103 individuals) and a test set of 196 nodules (158 individuals). For the test set, three radiologically trained readers classified the nodules into three nodule categories: typical PFN, atypical PFN, and non-PFN. The consensus of the three readers was used as reference to evaluate the performance of the PFN-CNN. Typical PFNs were considered as positive results, and atypical PFNs and non-PFNs were grouped as negative results. PFN-CNN performance was evaluated using the ROC curve, confusion matrix, and Cohen's kappa. RESULTS: Internal validation yielded a mean AUC of 91.9% (95% CI 90.6-92.9) with 78.7% sensitivity and 90.4% specificity. For the test set, the reader consensus rated 45/196 (23%) of nodules as typical PFN. The classifier-reader agreement (k = 0.62-0.75) was similar to the inter-reader agreement (k = 0.64-0.79). Area under the ROC curve was 95.8% (95% CI 93.3-98.4), with a sensitivity of 95.6% (95% CI 84.9-99.5), and specificity of 88.1% (95% CI 81.8-92.8). CONCLUSION: The PFN-CNN showed excellent performance in classifying typical PFNs. Its agreement with radiologically trained readers is within the range of inter-reader agreement. Thus, the CNN-based system has potential in clinical and screening settings to rule out perifissural nodules and increase reader efficiency. KEY POINTS: • Agreement between the PFN-CNN and radiologically trained readers is within the range of inter-reader agreement. • The CNN model for the classification of typical PFNs achieved an AUC of 95.8% (95% CI 93.3-98.4) with 95.6% (95% CI 84.9-99.5) sensitivity and 88.1% (95% CI 81.8-92.8) specificity compared to the consensus of three readers.


Subject(s)
Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Netherlands , Solitary Pulmonary Nodule/diagnostic imaging
14.
Radiology ; 297(1): E216-E222, 2020 10.
Article in English | MEDLINE | ID: mdl-32324101

ABSTRACT

A potential link between mortality, d-dimer values, and a prothrombotic syndrome has been reported in patients with coronavirus disease 2019 (COVID-19) infection. The National Institute for Public Health of the Netherlands asked a group of radiology and vascular medicine experts to provide guidance for the imaging work-up and treatment of these important complications. This report summarizes evidence for thromboembolic disease, potential diagnostic and preventive actions, and recommendations for prophylaxis and treatment of patients with COVID-19 infection.


Subject(s)
Coronavirus Infections/blood , Pneumonia, Viral/blood , Thromboembolism/therapy , Thromboembolism/virology , Adult , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Disseminated Intravascular Coagulation/diagnosis , Disseminated Intravascular Coagulation/prevention & control , Disseminated Intravascular Coagulation/therapy , Disseminated Intravascular Coagulation/virology , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Lung/pathology , Male , Middle Aged , Netherlands/epidemiology , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Practice Guidelines as Topic , Public Health , Retrospective Studies , SARS-CoV-2 , Thromboembolism/diagnosis , Thromboembolism/prevention & control , Tomography, X-Ray Computed
15.
J Magn Reson Imaging ; 52(5): 1340-1351, 2020 11.
Article in English | MEDLINE | ID: mdl-31837078

ABSTRACT

Cardiac T2 * mapping is a noninvasive MRI method that is used to identify myocardial iron accumulation in several iron storage diseases such as hereditary hemochromatosis, sickle cell disease, and ß-thalassemia major. The method has improved over the years in terms of MR acquisition, focus on relative artifact-free myocardium regions, and T2 * quantification. Several improvement factors involved include blood pool signal suppression, the reproducibility of T2 * measurement as affected by scanner hardware, and acquisition software. Regarding the T2 * quantification, improvement factors include the applied curve-fitting method with or without truncation of the signals acquired at longer echo times and whether or not T2 * measurement focuses on multiple segmental regions or the midventricular septum only. Although already widely applied in clinical practice, data processing still differs between centers, contributing to measurement outcome variations. State of the art T2 * measurement involves pixelwise quantification providing better spatial iron loading information than region of interest-based quantification. Improvements have been proposed, such as on MR acquisition for free-breathing mapping, the generation of fast mapping, noise reduction, automatic myocardial contour delineation, and different T2 * quantification methods. This review deals with the pro and cons of different methods used to quantify T2 * and generate T2 * maps. The purpose is to recommend a combination of MR acquisition and T2 * mapping quantification techniques for reliable outcomes in measuring and follow-up of myocardial iron overload. The clinical application of cardiac T2 * mapping for iron overload's early detection, monitoring, and treatment is addressed. The prospects of T2 * mapping combined with different MR acquisition methods, such as cardiac T1 mapping, are also described. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.


Subject(s)
Iron Overload , Heart/diagnostic imaging , Humans , Iron Overload/diagnostic imaging , Magnetic Resonance Imaging , Myocardium , Reproducibility of Results
16.
Eur Radiol ; 30(1): 652-662, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31410603

ABSTRACT

OBJECTIVE: To compare the robustness of native T1 mapping using mean and median pixel-wise quantification methods. METHODS: Fifty-seven consecutive patients without overt signs of heart failure were examined in clinical routine for suspicion of cardiomyopathy. MRI included the acquisition of native T1 maps by a motion-corrected modified Look-Locker inversion recovery sequence at 1.5 T. Heart function status according to four established volumetric left ventricular (LV) cardio MRI parameter thresholds was used for retrospective separation into subgroups of normal (n = 26) or abnormal heart function (n = 31). Statistical normality of pixel-wise T1 was tested on each myocardial segment and mean and median segmental T1 values were assessed. RESULTS: Segments with normally distributed pixel-wise T1 (57/58%) showed no difference between mean and median quantification in either patient group, while differences were highly significant (p < 0.001) for the respective 43/42% non-normally distributed segments. Heart function differentiation between two patient groups was significant in 14 myocardial segments (p < 0.001-0.040) by median quantification compared with six (p < 0.001-0.042) by using the mean. The differences by median quantification were observed between the native T1 values of the three coronary artery territories of normal heart function patients (p = 0.023) and insignificantly in the abnormal patients (p = 0.053). CONCLUSION: Median quantification increases the robustness of myocardial native T1 definition, regardless of statistical normality of the data. Compared with the currently prevailing method of mean quantification, differentiation between LV segments and coronary artery territories is better and allows for earlier detection of heart function impairment. KEY POINTS: • Median pixel-wise quantification of native T1 maps is robust and can be applied regardless of the statistical distribution of data points. • Median quantification is more sensitive to early heart function abnormality compared with mean quantification. • The new method yields significant native T1 value differentiation between the three coronary artery territories.


Subject(s)
Cardiomyopathies/diagnostic imaging , Cardiomyopathies/physiopathology , Magnetic Resonance Imaging/methods , Adult , Female , Heart/diagnostic imaging , Heart/physiopathology , Humans , Male , Middle Aged , Retrospective Studies
17.
Eur J Epidemiol ; 35(1): 75-86, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31016436

ABSTRACT

Lung cancer, chronic obstructive pulmonary disease (COPD), and coronary artery disease (CAD) are expected to cause most deaths by 2050. State-of-the-art computed tomography (CT) allows early detection of lung cancer and simultaneous evaluation of imaging biomarkers for the early stages of COPD, based on pulmonary density and bronchial wall thickness, and of CAD, based on the coronary artery calcium score (CACS), at low radiation dose. To determine cut-off values for positive tests for elevated risk and presence of disease is one of the major tasks before considering implementation of CT screening in a general population. The ImaLife (Imaging in Lifelines) study, embedded in the Lifelines study, is designed to establish the reference values of the imaging biomarkers for the big three diseases in a well-defined general population aged 45 years and older. In total, 12,000 participants will undergo CACS and chest acquisitions with latest CT technology. The estimated percentage of individuals with lung nodules needing further workup is around 1-2%. Given the around 10% prevalence of COPD and CAD in the general population, the expected number of COPD and CAD is around 1000 each. So far, nearly 4000 participants have been included. The ImaLife study will allow differentiation between normal aging of the pulmonary and cardiovascular system and early stages of the big three diseases based on low-dose CT imaging. This information can be finally integrated into personalized precision health strategies in the general population.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Early Detection of Cancer , Lung Neoplasms/diagnostic imaging , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Mass Screening , Middle Aged , Population Surveillance , Predictive Value of Tests
18.
J Digit Imaging ; 33(5): 1301-1305, 2020 10.
Article in English | MEDLINE | ID: mdl-32779017

ABSTRACT

The developments in Computed Tomography (CT) and Magnetic Resonance allow visualization of blood flow in vivo using these techniques. However, validation tests are needed to determine a gold standard. For the validation tests, controllable systems that can generate pulsatile flow are needed. In this study, we aimed to develop an affordable pulsatile pump and an artificial circulatory system to simulate the blood flow for validation purposes. Initially, the prerequisites for the phantom were pulsating flow output equal to that of the human cardiac pulse pattern; the flow pattern of the mimicked cardiac output should be equal to that of a human, a variable stroke volume (40-120 ml/beat), and a variable heart rate (60-170 bpm). The developed phantom setup was tested with CT scanner. A washout profile was created based on the image intensity of the selected slice. The test was successful for a heart rate of 70 bpm and a stroke volume of 68 ml, but the system failed to work at various heartbeats and stroke volumes. This was due to the problems with software of the microcontroller. As conclusion in this study, we present a proof of concept for a pulsatile heart phantom pump that can be used in validation tests.


Subject(s)
Heart , Phantoms, Imaging , Equipment Design , Heart/diagnostic imaging , Hemodynamics , Humans , Pulsatile Flow , Tomography, X-Ray Computed
19.
J Digit Imaging ; 33(2): 480-489, 2020 04.
Article in English | MEDLINE | ID: mdl-31745678

ABSTRACT

To investigate the relationship between dynamic changes of coronary artery geometry and coronary artery disease (CAD) using computed tomography (CT). Seventy-one patients underwent coronary CT angiography with retrospective electrocardiographic gating. End-systolic (ES) and end-diastolic (ED) phases were automatically determined by dedicated software. Centerlines were extracted for the right and left coronary artery. Differences between ES and ED curvature and tortuosity were determined. Associations of change in geometrical parameters with plaque types and degree of stenosis were investigated using linear mixed models. The differences in number of inflection points were analyzed using Wilcoxon signed-rank tests. Tests were done on artery and segment level. One hundred thirty-seven arteries (64.3%) and 456 (71.4%) segments were included. Curvature was significantly higher in ES than in ED phase for arteries (p = 0.002) and segments (p < 0.001). The difference was significant only at segment level for tortuosity (p = 0.005). Number of inflection points was significantly higher in ES phase on both artery and segment level (p < 0.001). No significant relationships were found between degree of stenosis and plaque types and dynamic change in geometrical parameters. Non-invasive imaging by cardiac CT can quantify change in geometrical parameters of the coronary arteries during the cardiac cycle. Dynamic change of vessel geometry through the cardiac cycle was not found to be related to the presence of CAD.


Subject(s)
Computed Tomography Angiography , Coronary Artery Disease , Aged , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Tomography, X-Ray Computed
20.
Thorax ; 74(8): 761-767, 2019 08.
Article in English | MEDLINE | ID: mdl-31028232

ABSTRACT

BACKGROUND: Estimation of the clinical probability of malignancy in patients with pulmonary nodules will facilitate early diagnosis, determine optimum patient management strategies and reduce overall costs. METHODS: Data from the UK Lung Cancer Screening trial were analysed. Multivariable logistic regression models were used to identify independent predictors and to develop a parsimonious model to estimate the probability of lung cancer in lung nodules detected at baseline and at 3-month and 12-month repeat screening. RESULTS: Of 1994 participants who underwent CT scan, 1013 participants had a total of 5063 lung nodules and 52 (2.6%) of the participants developed lung cancer during a median follow-up of 4 years. Covariates that predict lung cancer in our model included female gender, asthma, bronchitis, asbestos exposure, history of cancer, early and late onset of family history of lung cancer, smoking duration, FVC, nodule type (pure ground-glass and part-solid) and volume as measured by semiautomated volumetry. The final model incorporating all predictors had excellent discrimination: area under the receiver operating characteristic curve (AUC 0.885, 95% CI 0.880 to 0.889). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected AUC 0.882, 95% CI 0.848 to 0.907). The risk model had a good calibration (goodness-of-fit χ[8] 8.13, p=0.42). CONCLUSIONS: Our model may be used in estimating the probability of lung cancer in nodules detected at baseline and at 3 months and 12 months from baseline, allowing more efficient stratification of follow-up in population-based lung cancer screening programmes. TRIAL REGISTRATION NUMBER: 78513845.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Models, Statistical , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Tumor Burden , Aged , Area Under Curve , Early Detection of Cancer , Female , Humans , Male , Middle Aged , Multivariate Analysis , Pilot Projects , Probability , ROC Curve , Risk Factors , Time Factors , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL