ABSTRACT
Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the transcriptional regulation of genes involved in cuticle biosynthesis.
Subject(s)
Genes, Plant/genetics , Homeodomain Proteins/metabolism , Leucine Zippers/genetics , Plant Epidermis/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Zea mays/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Homeodomain Proteins/genetics , Lipid Metabolism/genetics , Oligonucleotide Array Sequence Analysis , Organ Specificity/genetics , Plant Leaves/cytology , Plant Leaves/genetics , Plant Proteins/genetics , Reproducibility of Results , Transcription Factors/genetics , Transcriptional Activation/genetics , Transformation, Genetic , Waxes/metabolism , Zea mays/immunologyABSTRACT
CD36 is a ubiquitous membrane glycoprotein that binds long-chain fatty acids. The presence of a functional CD36 is required for the induction of satiety by a lipid load and its role as a lipid receptor driving cellular signal has recently been demonstrated. Our project aimed to further explore the role of intestinal CD36 in the regulation of food intake. Duodenal infusions of vehicle or sulfo-N-succinimidyl-oleate (SSO) was performed prior to acute infusions of saline or Intralipid (IL) in mice. Infusion of minute quantities of IL induced a decrease in food intake (FI) compared to saline. Infusion of SSO had the same effect but no additive inhibitory effect was observed in presence of IL. No IL- or SSO-mediated satiety occurred in CD36-null mice. To determine whether the CD36-mediated hypophagic effect of lipids was maintained in animals fed a satietogen diet, mice were subjected to a High-Protein diet (HPD). Concomitantly with the satiety effect, a rise in intestinal CD36 gene expression was observed. No satiety effect occurred in CD36-null mice. HPD-fed WT mice showed a diminished FI compared to control mice, after saline duodenal infusion. But there was no further decrease after lipid infusion. The lipid-induced decrease in FI observed on control mice was accompanied by a rise in jejunal oleylethanolamide (OEA). Its level was higher in HPD-fed mice than in controls after saline infusion and was not changed by lipids. Overall, we demonstrate that lipid binding to intestinal CD36 is sufficient to produce a satiety effect. Moreover, it could participate in the satiety effect induced by HPD. Intestine can modulate FI by several mechanisms including an increase in OEA production and CD36 gene expression. Furthermore, intestine of mice adapted to HPD have a diminished capacity to modulate their food intake in response to dietary lipids.
Subject(s)
CD36 Antigens/metabolism , Diet , Intestinal Mucosa/metabolism , Satiety Response , Animals , CD36 Antigens/genetics , Eating/drug effects , Gene Expression Regulation/drug effects , Intestines/drug effects , Ligands , Male , Mice , Mice, Inbred C57BL , Oleic Acids/biosynthesis , Oleic Acids/metabolism , Oleic Acids/pharmacology , Protein Binding , Satiety Response/drug effects , Succinimides/metabolism , Succinimides/pharmacology , Time FactorsABSTRACT
The lipids that are essential to the functioning of the bacterial membrane exist in hundreds of different forms. The reasons for this diversity are far from clear but are presumably related to the roles of these lipids in both facilitating enzymic activities and generating proteolipid domains. A full understanding of bacterial physiology therefore requires characterization of lipids in different strains in a variety of environmental conditions. This characterization then becomes the basis for lipidomics, the lipid aspect of the growing field of metabolomics. To exploit the power of derivatization chemistry and of gas chromatography/mass spectrometry (GC/MS) and tandem mass spectrometry (MS/MS) for metabolomics studies, we report here the development of various GC/MS electron ionization (EI) and negative and positive chemical ionization (CI) methods for the identification and, for the first time, the relative quantification of fatty acids present in extracts from membranes of a laboratory strain of Escherichia coli. They consist of seven saturated fatty acids (C10:0, C12:0, C14:0, C15:0, C16:0, C17:0 and C18:0) and six unsaturated fatty acids (C16:1, cyC17:0 plus two isomers of C18:1, C18:2 and cyC19:0).
Subject(s)
Cell Membrane/chemistry , Escherichia coli/chemistry , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass SpectrometryABSTRACT
A liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method using reversed-phase chromatography was developed for the analysis of phospholipids from bacterial extracts of a wild-type strain of Escherichia coli. Product ion mass spectra from [M--H](-) precursor ions allowed an identification of individual phospholipid species that includes both fatty acid composition and fatty acyl location on the glycerol backbone using diagnostic product ions. Thus, complete assignment, including sn-1/sn-2 fatty acyl position, was achieved for this strain of E. coli. In addition, the phospholipids were quantified relative to one another using an internal standard method.