Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLoS Genet ; 19(2): e1010666, 2023 02.
Article in English | MEDLINE | ID: mdl-36809245

ABSTRACT

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chromosome Pairing , Chromosome Segregation , Mammals/genetics , Meiosis , Meiotic Prophase I , Synaptonemal Complex/metabolism
2.
J Physiol ; 601(22): 5075-5091, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37725436

ABSTRACT

Small extracellular vesicles (EV) are membrane-encapsulated particles that carry bioactive cargoes, are released by all cell types and are present in all human biofluids. Changes in EV profiles and abundance occur in response to acute exercise, but this study investigated whether individuals with divergent histories of exercise training (recreationally active controls - CON; endurance-trained - END; strength-trained - STR) presented with varied abundances of small EVs in resting samples and whether the abundance of small EVs differed within each group across two measurement days. Participants (n = 38, all male; CON n = 12, END n = 13, STR n = 13) arrived at the lab on two separate occasions in a rested, overnight fasted state, with standardisation of time of day of sampling, recent dietary intake, time since last meal and time since last exercise training session (∼40 h). Whole blood samples were collected and separated into plasma from which small EVs were separated using size exclusion chromatography and identified in accordance with the Minimal Information For Studies of Extracellular Vesicles (MISEV) guidelines. No differences in the abundance of small EVs were observed within or between groups across multiple methods of small EV identification (nanoparticle tracking analysis, flow cytometry, immunoblot of specific EV markers). Targeted metabolomics of the small EV preparations identified 96 metabolites that were associated with the structure and function of small EVs, with no statistically significant differences in concentrations observed across groups. The results of the current study suggest that the abundance and metabolomic profile of small EVs derived from men with divergent histories of exercise training are similar to those in resting blood samples. KEY POINTS: Extracellular vesicles (EV) are membrane-encapsulated particles that are present in circulation and carry bioactive materials as 'cargo'. The abundance and profile of small EVs are responsive to acute exercise, but little is known about the relationship between small EVs and exercise training. This study examined the abundance, and a targeted metabolomic profile, of small EVs separated from the blood of endurance athletes, strength athletes and recreationally active controls at rest (∼40 h after the most recent exercise session) on two separate but identical lab visits. No differences were observed in the abundance or metabolomic profile of small EV preparations between the groups or between the lab visits within each group. Further research should determine whether the bioactive cargoes (e.g. RNA, protein and additional metabolites) carried within EVs are altered in individuals with divergent histories of exercise training or in response to exercise training interventions.


Subject(s)
Extracellular Vesicles , Humans , Male , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Exercise
3.
Genome Res ; 30(5): 724-735, 2020 05.
Article in English | MEDLINE | ID: mdl-32424072

ABSTRACT

Despite the interest in characterizing genomic variation, the presence of large repeats at the breakpoints hinders the analysis of many structural variants. This is especially problematic for inversions, since there is typically no gain or loss of DNA. Here, we tested novel linkage-based droplet digital PCR (ddPCR) assays to study 20 inversions ranging from 3.1 to 742 kb flanked by inverted repeats (IRs) up to 134 kb long. Of those, we validated 13 inversions predicted by different genome-wide techniques. In addition, we obtained new experimental human population information across 95 African, European, and East Asian individuals for 16 inversions, including four already validated variants without high-throughput genotyping methods. Through comparison with previous data, independent replicates and both inversion breakpoints, we demonstrate that the technique is highly accurate and reproducible. Most studied inversions are widespread across continents, and their frequency is negatively correlated with genetic length. Moreover, all except two show clear signs of being recurrent, and we could better define the factors affecting recurrence levels and estimate the inversion rate across the genome. Finally, the generated genotypes have allowed us to check inversion functional effects, validating gene expression differences reported before for two inversions and finding new candidate associations. Therefore, the developed methodology makes it possible to screen these and other complex genomic variants quickly in a large number of samples for the first time, highlighting the importance of direct genotyping to assess their potential consequences and clinical implications.


Subject(s)
Chromosome Inversion , Polymerase Chain Reaction/methods , Genome, Human , Genotyping Techniques , Humans , Nucleotides/analysis
4.
Exp Physiol ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991325

ABSTRACT

NEW FINDINGS: What is the central question of this study? Little is known regarding the effects of media supplemented with resting plasma from exercise-trained individuals, despite the established bioactive effects of acutely exercised samples. Does media supplemented with resting plasma from endurance-trained, strength-trained or recreationally active controls impact hallmarks of cancer in BT-549 cells? What is the main finding and its importance? Supplementing media with plasma from these trained athletes did not impact proliferation, migration, invasion or anoikis resistance compared to plasma from recreationally-active controls. These findings suggest that 'anti-cancer' effects of exercise are not present in resting blood samples of exercise-trained individuals. ABSTRACT: Media supplemented with sera from acutely exercised men has been shown to have 'anti-cancer' effects on prostate and breast cancer cell lines. This study investigated whether media supplemented with plasma samples taken at rest (≥30 h since the most recent exercise session) from men who were endurance-trained (END), strength-trained (STR) or recreationally active controls (CON) impacted the results of four assays that mimic hallmarks of cancer (proliferation, migration, extracellular matrix invasion and anoikis resistance) in the BT-549 breast cancer cell line. Compared to control conditions of either serum-free media or fetal bovine serum as appropriate, BT-549 cells cultured with plasma-supplemented media regardless of group resulted in greater cell proliferation (∼20-50%) and cell migration (∼15-20%), and lower extracellular matrix invasion (∼10-20%) and anoikis resistance (∼15-20%). Supplementing media with plasma from END or STR did not impact any outcomes of these assays compared to plasma from CON. Media supplemented with human plasma can impact functional assays reflective of cancer hallmarks in BT-549 cells, but effects of exercise on proliferation, migration, extracellular matrix invasion and anoikis resistance were not evident in resting blood samples of individuals with a prior history of exercise training.

5.
Chromosoma ; 128(3): 489-500, 2019 09.
Article in English | MEDLINE | ID: mdl-31489491

ABSTRACT

Mammalian female fertility relies on the proper development of follicles. Right after birth in the mouse, oocytes associate with somatic ovarian cells to form follicles. These follicles grow during the adult lifetime to produce viable gametes. In this study, we analyzed the role of the ATM and rad3-related (ATR) kinase in mouse oogenesis and folliculogenesis using a hypomorphic mutation of the Atr gene (Murga et al. 2009). Female mice homozygotes for this allele have been reported to be sterile. Our data show that female meiotic prophase is not grossly altered when ATR levels are reduced. However, follicle development is substantially compromised, since Atr mutant ovaries present a decrease of growing follicles. Comprehensive analysis of follicular cell death and proliferation suggest that wild-type levels of ATR are required to achieve optimal follicular development. Altogether, these findings suggest that reduced ATR expression causes sterility due to defects in follicular progression rather than in meiotic recombination. We discuss the implications of these findings for the use of ATR inhibitors such as anti-cancer drugs and its possible side-effects on female fertility.


Subject(s)
Oogenesis , Ovarian Follicle/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Female , Meiosis/genetics , Mice , Oogenesis/genetics , Ovary/metabolism , Prophase/genetics
6.
PLoS Genet ; 13(6): e1006845, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617799

ABSTRACT

To protect germ cells from genomic instability, surveillance mechanisms ensure meiosis occurs properly. In mammals, spermatocytes that display recombination defects experience a so-called recombination-dependent arrest at the pachytene stage, which relies on the MRE11 complex-ATM-CHK2 pathway responding to unrepaired DNA double-strand breaks (DSBs). Here, we asked if p53 family members-targets of ATM and CHK2-participate in this arrest. We bred double-mutant mice combining a mutation of a member of the p53 family (p53, TAp63, or p73) with a Trip13 mutation. Trip13 deficiency triggers a recombination-dependent response that arrests spermatocytes in pachynema before they have incorporated the testis-specific histone variant H1t into their chromatin. We find that deficiency for either p53 or TAp63, but not p73, allowed spermatocytes to progress further into meiotic prophase despite the presence of numerous unrepaired DSBs. Even so, the double mutant spermatocytes apoptosed at late pachynema because of sex body deficiency; thus p53 and TAp63 are dispensable for arrest caused by sex body defects. These data affirm that recombination-dependent and sex body-deficient arrests occur via genetically separable mechanisms.


Subject(s)
Meiosis/genetics , Phosphoproteins/genetics , Recombination, Genetic , Trans-Activators/genetics , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/genetics , Cell Cycle Checkpoints , Chromatin/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , Histones/genetics , Male , Mice , Pachytene Stage/genetics , Spermatocytes/growth & development , Spermatocytes/metabolism , Testis/growth & development , Testis/metabolism
7.
Hum Mol Genet ; 26(3): 567-581, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28025331

ABSTRACT

The growing catalogue of structural variants in humans often overlooks inversions as one of the most difficult types of variation to study, even though they affect phenotypic traits in diverse organisms. Here, we have analysed in detail 90 inversions predicted from the comparison of two independently assembled human genomes: the reference genome (NCBI36/HG18) and HuRef. Surprisingly, we found that two thirds of these predictions (62) represent errors either in assembly comparison or in one of the assemblies, including 27 misassembled regions in HG18. Next, we validated 22 of the remaining 28 potential polymorphic inversions using different PCR techniques and characterized their breakpoints and ancestral state. In addition, we determined experimentally the derived allele frequency in Europeans for 17 inversions (DAF = 0.01-0.80), as well as the distribution in 14 worldwide populations for 12 of them based on the 1000 Genomes Project data. Among the validated inversions, nine have inverted repeats (IRs) at their breakpoints, and two show nucleotide variation patterns consistent with a recurrent origin. Conversely, inversions without IRs have a unique origin and almost all of them show deletions or insertions at the breakpoints in the derived allele mediated by microhomology sequences, which highlights the importance of mechanisms like FoSTeS/MMBIR in the generation of complex rearrangements in the human genome. Finally, we found several inversions located within genes and at least one candidate to be positively selected in Africa. Thus, our study emphasizes the importance of careful analysis and validation of large-scale genomic predictions to extract reliable biological conclusions.


Subject(s)
Chromosome Inversion/genetics , Genome, Human/genetics , Molecular Sequence Annotation , Sequence Inversion/genetics , Evolution, Molecular , Humans , Polymorphism, Genetic , Selection, Genetic/genetics , Sequence Analysis, DNA
8.
PLoS Genet ; 11(3): e1005017, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25768017

ABSTRACT

Most mutations that compromise meiotic recombination or synapsis in mouse spermatocytes result in arrest and apoptosis at the pachytene stage of the first meiotic prophase. Two main mechanisms are thought to trigger arrest: one independent of the double-strand breaks (DSBs) that initiate meiotic recombination, and another activated by persistent recombination intermediates. Mechanisms underlying the recombination-dependent arrest response are not well understood, so we sought to identify factors involved by examining mutants deficient for TRIP13, a conserved AAA+ ATPase required for the completion of meiotic DSB repair. We find that spermatocytes with a hypomorphic Trip13 mutation (Trip13mod/mod) arrest with features characteristic of early pachynema in wild type, namely, fully synapsed chromosomes without incorporation of the histone variant H1t into chromatin. These cells then undergo apoptosis, possibly in response to the arrest or in response to a defect in sex body formation. However, TRIP13-deficient cells that additionally lack the DSB-responsive kinase ATM progress further, reaching an H1t-positive stage (i.e., similar to mid/late pachynema in wild type) despite the presence of unrepaired DSBs. TRIP13-deficient spermatocytes also progress to an H1t-positive stage if ATM activity is attenuated by hypomorphic mutations in Mre11 or Nbs1 or by elimination of the ATM-effector kinase CHK2. These mutant backgrounds nonetheless experience an apoptotic block to further spermatogenic progression, most likely caused by failure to form a sex body. DSB numbers are elevated in Mre11 and Nbs1 hypomorphs but not Chk2 mutants, thus delineating genetic requirements for the ATM-dependent negative feedback loop that regulates DSB numbers. The findings demonstrate for the first time that ATM-dependent signaling enforces the normal pachytene response to persistent recombination intermediates. Our work supports the conclusion that recombination defects trigger spermatocyte arrest via pathways than are genetically distinct from sex body failure-promoted apoptosis and confirm that the latter can function even when recombination-dependent arrest is inoperative. Implications of these findings for understanding the complex relationships between spermatocyte arrest and apoptosis are discussed.


Subject(s)
Adenosine Triphosphatases/genetics , Cell Cycle Proteins/genetics , Checkpoint Kinase 2/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Nuclear Proteins/genetics , Spermatocytes/growth & development , ATPases Associated with Diverse Cellular Activities , Animals , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Checkpoints/genetics , Chromosome Pairing/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , MRE11 Homologue Protein , Male , Mice , Mutation , Pachytene Stage/genetics , Recombination, Genetic , Signal Transduction/genetics , Spermatocytes/metabolism
9.
Chromosoma ; 120(5): 521-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21735165

ABSTRACT

Homologous chromosomes exchange genetic information through recombination during meiotic synapsis, a process that increases genetic diversity and is fundamental to sexual reproduction. Meiotic studies in mammalian species are scarce and mainly focused on human and mouse. Here, the meiotic recombination events were determined in three species of Platyrrhini monkeys (Cebus libidinosus, Cebus nigritus and Alouatta caraya) by analysing the distribution of MLH1 foci at the stage of pachytene. Moreover, the combination of immunofluorescence and fluorescent in situ hybridisation has enabled us to construct recombination maps of primate chromosomes that are homologous to human chromosomes 13 and 21. Our results show that (a) the overall number of MLH1 foci varies among all three species, (b) the presence of heterochromatin blocks does not have a major influence on the distribution of MLH1 foci and (c) the distribution of crossovers in the homologous chromosomes to human chromosomes 13 and 21 are conserved between species of the same genus (C. libidinosus and C. nigritus) but are significantly different between Cebus and Alouatta. This heterogeneity in recombination behaviour among Ceboidea species may reflect differences in genetic diversity and genome composition.


Subject(s)
Platyrrhini/genetics , Recombination, Genetic , Animals , Chromosomes, Mammalian/genetics , Humans , Male , Mice , Pachytene Stage
10.
Cancers (Basel) ; 13(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885142

ABSTRACT

To develop and subsequently get cancer researchers to use organotypic three-dimensional (3D) models that can recapitulate the complexity of human in vivo tumors in an in vitro setting, it is important to establish what in vitro model(s) researchers are currently using and the reasons why. Thus, we developed a survey on this topic, obtained ethics approval, and circulated it throughout the world. The survey was completed by 101 researchers, across all career stages, in academia, clinical or industry settings. It included 40 questions, many with multiple options. Respondents reported on their field of cancer research; type of cancers studied; use of two-dimensional (2D)/monolayer, 2.5D and/or 3D cultures; if using co-cultures, the cell types(s) they co-culture; if using 3D cultures, whether these involve culturing the cells in a particular way to generate spheroids, or if they use additional supports/scaffolds; techniques used to analyze the 2D/2.5D/3D; and their downstream applications. Most researchers (>66%) only use 2D cultures, mainly due to lack of experience and costs. Despite most cancer researchers currently not using the 3D format, >80% recognize their importance and would like to progress to using 3D models. This suggests an urgent need to standardize reliable, robust, reproducible methods for establishing cost-effective 3D cell culture models and their subsequent characterization.

11.
Cancers (Basel) ; 13(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34439176

ABSTRACT

To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines' CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes.

12.
Pharmaceutics ; 13(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34575601

ABSTRACT

Blood-brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological disorders, and immune cell-derived EVs are known to modulate cerebrovascular functions. However, little is known about whether brain endothelial cell (BEC)-derived EVs themselves contribute to BBB dysfunction. Human cerebral microvascular cells (hCMEC/D3) were treated with TNFα and IFNy, and the EVs were isolated and characterised. The effect of EVs on BBB transendothelial resistance (TEER) and leukocyte adhesion in hCMEC/D3 cells was measured by electric substrate cell-substrate impedance sensing and the flow-based T-cell adhesion assay. EV-induced molecular changes in recipient hCMEC/D3 cells were analysed by RT-qPCR and Western blotting. A stimulation of naïve hCMEC/D3 cells with small EVs (sEVs) reduced the TEER and increased the shear-resistant T-cell adhesion. The levels of microRNA-155, VCAM1 and ICAM1 were increased in sEV-treated hCMEC/D3 cells. Blocking the expression of VCAM1, but not of ICAM1, prevented sEV-mediated T-cell adhesion to brain endothelia. These results suggest that sEVs derived from inflamed BECs promote cerebrovascular dysfunction. These findings may provide new insights into the mechanisms involving neuroinflammatory disorders.

13.
Nat Commun ; 11(1): 4345, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859945

ABSTRACT

Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. Exploiting the temporo-spatial organisation of the C. elegans germline and time-resolved methods of protein removal, we show that surveillance of the synaptonemal complex (SC) controls meiotic progression. In nuclei with fully synapsed homologues and crossover precursors, removing different meiosis-specific cohesin complexes, which are individually required for SC stability, or a SC central region component causes functional redeployment of the chromosome movement and DSB machinery, triggering whole-nucleus reorganisation. This apparent reversal of the meiotic programme requires CHK-2 kinase reactivation via signalling from chromosome axes containing HORMA proteins, but occurs in the absence of transcriptional changes. Our results uncover an unexpected plasticity of the meiotic programme and show how chromosome signalling orchestrates nuclear organisation and meiotic progression.


Subject(s)
Caenorhabditis elegans/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Structures/metabolism , Meiosis/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Checkpoints , Checkpoint Kinase 2/metabolism , Chromosome Pairing , DNA Breaks, Double-Stranded , Synaptonemal Complex/metabolism , Cohesins
14.
Nat Commun ; 9(1): 2622, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29977027

ABSTRACT

Precise execution of recombination during meiosis is essential for forming chromosomally-balanced gametes. Meiotic recombination initiates with the formation and resection of DNA double-strand breaks (DSBs). Cellular responses to meiotic DSBs are critical for efficient repair and quality control, but molecular features of these remain poorly understood, particularly in mammals. Here we report that the DNA damage response protein kinase ATR is crucial for meiotic recombination and completion of meiotic prophase in mice. Using a hypomorphic Atr mutation and pharmacological inhibition of ATR in vivo and in cultured spermatocytes, we show that ATR, through its effector kinase CHK1, promotes efficient RAD51 and DMC1 assembly at RPA-coated resected DSB sites and establishment of interhomolog connections during meiosis. Furthermore, our findings suggest that ATR promotes local accumulation of recombination markers on unsynapsed axes during meiotic prophase to favor homologous chromosome synapsis. These data reveal that ATR plays multiple roles in mammalian meiotic recombination.


Subject(s)
DNA Breaks, Double-Stranded , Homologous Recombination , Meiosis/genetics , Spermatocytes/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Chromosome Pairing/genetics , In Situ Hybridization, Fluorescence , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphate-Binding Proteins , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Testis/cytology , Testis/metabolism
15.
Nat Commun ; 9(1): 2621, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976923

ABSTRACT

Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.


Subject(s)
Chromosomes, Mammalian/genetics , DNA Breaks, Double-Stranded , Meiosis/genetics , Spermatocytes/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Pairing/genetics , Chromosomes, Mammalian/metabolism , In Situ Hybridization, Fluorescence , Male , Meiotic Prophase I/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphate-Binding Proteins , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
16.
Nat Commun ; 6: 7676, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26158450

ABSTRACT

CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.


Subject(s)
Cell Cycle Proteins/genetics , Centrosome/metabolism , Dwarfism/genetics , Homologous Recombination/genetics , Meiosis/genetics , Microcephaly/genetics , Spermatocytes/metabolism , Tumor Suppressor Protein p53/genetics , Animals , DNA Damage , Facies , Immunohistochemistry , Male , Mice , Real-Time Polymerase Chain Reaction , Recombination, Genetic/genetics , Sperm Count , Spermatocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL