Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Ultrastruct Pathol ; 45(4-5): 276-285, 2021.
Article in English | MEDLINE | ID: mdl-34423726

ABSTRACT

Radiation therapy may compromise the quality of bone around dental implants, and its ability to regenerate, remodel, and revascularize. This study aimed to describe the irradiation effect on the bone microstructure of the mandible using dental implants in a canine model. Five beagle dogs were exposed to 40 Gy fractionated radiation. In total, 20 dental implants were inserted, two in the irradiated and two in the non-irradiated side. The mandible bone blocks were subjected to 3D micro-computed tomography (µCT) imaging, later evaluated histomorphometrically by light microscopy and scanning electron microscopy. Alterations in irradiated bone were observed under µCT imaging showing an increased anisotropy, porosity, and pore volume. Bone surface-to-bone volume decreased. The bone to implant contact index was significantly reduced in the irradiated bone (75.6% ± 5.8%) as compared to the non-irradiated bone (85.1% ± 6.8%). In the irradiated mandible, osteocytes with their filopodial processes, the bone beneath the periosteum, and subperiosteal veins showed structural differences but were not significant, whereas the diameter of Haversian canals were smaller statistical significant as compared to the control side. The study highlights that radiation dosage of fractioned 40 Gy causes alterations in the alveolar bone microstructure with compatible osseointegration and clinically stable dental implants.


Subject(s)
Dental Implants , Animals , Dogs , Mandible/diagnostic imaging , Osseointegration , Osteocytes , X-Ray Microtomography
2.
Int J Radiat Biol ; 98(2): 136-147, 2022.
Article in English | MEDLINE | ID: mdl-34855558

ABSTRACT

PURPOSE: Emerging evidence shows that changes in the bone and its microenvironment following radiotherapy are associated with either an inhibition or a state of low bone formation. Ionizing radiation is damaging to the jawbone as it increases the complication rate due to the development of hypovascular, hypocellular, and hypoxic tissue. This review summarizes and correlates the current knowledge on the effects of irradiation on the bone with an emphasis on jawbone, as these have been a less extensively studied area. CONCLUSIONS: The stringent regulation of bone formation and bone resorption can be influenced by radiation, causing detrimental effects at structural, cellular, vascular, and molecular levels. It is also associated with a high risk of damage to surrounding healthy tissues and an increased risk of fracture. Technological advances and research on animal models as well as a few human bone tissue studies have provided novel insights into the ways in which bone can be affected by high, low and sublethal dose of radiation. The influence of radiation on bone metabolism, cellular properties, vascularity, collagen, and other factors like inflammation, reactive oxygen species are discussed.


Subject(s)
Bone Resorption , Radiation, Ionizing , Animals , Bone and Bones , Osteogenesis , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL