Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Small ; 19(20): e2207328, 2023 May.
Article in English | MEDLINE | ID: mdl-36799132

ABSTRACT

Li-rich layered oxides are considered as one of the most promising cathode materials for secondary lithium batteries due to their high specific capacities, but the issue of continuous voltage decay during cycling hinders their market entry. Increasing the Ni content in Li-rich materials is assumed to be an effective way to address this issue and attracts recent research interests. However, a high Ni content may induce increased intrinsic reactivity of materials, resulting in severe side reactions with the electrolyte. Thus, a comprehensive study to differentiate the two effects of the Ni content on the cell performance with Li-rich cathode is carried out in this work. Herein, it is demonstrated that a properly dosed amount of Ni can effectively suppress the voltage decay in Li-rich cathodes, while over-loading of Ni, on the contrary, can cause structural instability, Ni dissolution, and nonuniform Li deposition during cycling as well as severe oxygen loss. This work offers a deep understanding on the impacts of Ni content in Li-rich materials, which can be a good guidance for the future design of such cathodes for high energy density lithium batteries.

2.
J Am Chem Soc ; 144(10): 4657-4666, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35232022

ABSTRACT

In ionic-liquid (IL)-based electrolytes, relevant for current energy storage applications, ion transport is limited by strong ion-ion correlations, generally yielding inverse Haven ratios (ionicities) of below 1. In particular, Li is transported in anionic clusters into the wrong direction of the electric field, requiring compensation by diffusive anion fluxes. Here, we present a concept to exploit ion-ion correlations in concentrated IL electrolytes beneficially by designing organic cations with a Li-coordinating chain. 1H NMR and Raman spectra show that IL cations with seven or more ether oxygens in the side chain induce Li coordination to organic cations. An unusual behavior of an inverse Haven ratio of >1 is found, suggesting an ionicity larger than that of an ideal electrolyte with uncorrelated ion motion. This superionic behavior is consistently demonstrated in both NMR transport/conductivity measurements and molecular dynamics (MD) simulations. Key to this achievement is the formation of long-lived Li-IL cation complexes, which invert the Li drift direction, yielding positive Li+ ion mobilities for the first time in a single IL-solvent-based electrolyte. Onsager correlation coefficients are derived from MD simulations and demonstrate that the main contributions to the inverse Haven ratio, which induce superionicity, arise from enhanced Li-IL cation correlations and a sign inversion of Li-anion correlation coefficients. Thus, the novel concept of coordinating cations not only corrects the unfortunate anionic drift direction of Li in ILs but even exploits strong ion correlations in the concentrated electrolyte toward superionic transport.

3.
Small ; 18(5): e2104986, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34850544

ABSTRACT

The formation of solid-electrolyte interphase (SEI) in "water-in-salt" electrolyte (WiSE) expands the electrochemical stability window of aqueous electrolytes beyond 3.0 V. However, the parasitic hydrogen evolution reaction that drives anode corrosion, cracking, and the subsequent reformation of SEI still occurs, compromising long-term cycling performance of the batteries. To improve cycling stability, an unsaturated monomer acrylamide (AM) is introduced as an electrolyte additive, whose presence in WiSE reduces its viscosity and improves ionic conductivity. Upon charging, AM electropolymerizes into polyacrylamide, as confirmed both experimentally and computationally. The in situ polymer constitutes effective protection layers at both anode and cathode surfaces, and enables LiMn2 O4 ||L-TiO2 full cells with high specific capacity (157 mAh g-1 at 1 C), long-term cycling stability (80% capacity retention within 200 cycles at 1 C), and high rate capability (79 mAh g-1 at 30 C). The in situ electropolymerization found in this work provides an alternative and highly effective strategy to design protective interphases at the negative and positive electrodes for high-voltage aqueous batteries of lithium-ion or beyond.

4.
Angew Chem Int Ed Engl ; 60(21): 11919-11927, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33645903

ABSTRACT

N-alkyl-N-alkyl pyrrolidinium-based ionic liquids (ILs) are promising candidates as non-flammable plasticizers for lowering the operation temperature of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs), but they present limitations in terms of lithium-ion transport, such as a much lower lithium transference number. Thus, a pyrrolidinium cation was prepared with an oligo(ethylene oxide) substituent with seven repeating units. We show, by a combination of experimental characterizations and simulations, that the cation's solvating properties allow faster lithium-ion transport than alkyl-substituted analogues when incorporated in SPEs. This proceeds not only by accelerating the conduction modes of PEO, but also by enabling new conduction modes linked to the solvation of lithium by a single IL cation. This, combined with favorable interfacial properties versus lithium metal, leads to significantly improved performance on lithium-metal polymer batteries.

5.
Angew Chem Int Ed Engl ; 60(42): 22812-22817, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34379346

ABSTRACT

The introduction of "water-in-salt" electrolyte (WiSE) concept opens a new horizon to aqueous electrochemistry that is benefited from the formation of a solid-electrolyte interphase (SEI). However, such SEI still faces multiple challenges, including dissolution, mechanical damaging, and incessant reforming, which result in poor cycling stability. Here, we report a polymeric additive, polyacrylamide (PAM) that effectively stabilizes the interphase in WiSE. With the addition of 5 molar % PAM to 21 mol kg-1 LiTFSI electrolyte, a LiMn2 O4 ∥L-TiO2 full cell exhibits enhanced cycling stability with 86 % capacity retention after 100 cycles at 1 C. The formation mechanism and evolution of PAM-assisted SEI was investigated using operando small angle neutron scattering and density functional theory (DFT) calculations, which reveal that PAM minimizes the presence of free water molecules at the anode/electrolyte interface, accelerates the TFSI- anion decomposition, and densifies the SEI.

6.
Phys Chem Chem Phys ; 18(31): 21539-47, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27426047

ABSTRACT

The presence of oligoether functional groups in the cations of ionic liquids has a significant effect on Li(+) coordination. In this work, a series of N-alkoxylether-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids were synthesized to investigate the effect of the number of ether units on Li(+) coordination and transport. The nature of Li(+) coordination was elucidated through the combination of Raman spectroscopy and heteronuclear Overhauser effect NMR spectroscopy. The presence of a simple ether in the cation side chain results in improved physical properties as compared to N-alkyl-N-methyl pyrrolidinium-based ionic liquids, but does not significantly affect Li(+) coordination possibly due to steric effects of the pyrrolidinium ring. Increasing the number of ethylene oxide units in the side chain results in the progressive displacement of IL anions in the first Li(+) solvation shell by IL cations due to the preferential coordination of Li(+) by the ether oxygen atoms. The apparent transference number of the IL cation decreases and that of the IL anion increases with increasing side chain length. Unfortunately, this does not result in an increase in the Li transference. Nonetheless, the results of this study have important implications for electrolyte systems where the desolvation of the metal cation from the IL anions is the limiting factor in the charge transport mechanism.

7.
Chemphyschem ; 15(10): 2177-85, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24723308

ABSTRACT

The electrochemical performance of nano- and micron-sized Co(3)O(4) is investigated, highlighting the substantial influence of the specific surface area on the obtainable specific capacities as well as the cycling stability. In fact, Co(3)O(4) materials with a high surface area (i.e. a small particle size) show superior specific features, which are, however, accompanied by a rapid capacity fading, owing to the increased formation of an insulating polymeric surface film that results from transition-metal-catalyzed electrolyte decomposition. The simultaneous coating with carbon of Co(3)O(4) nanoparticles and in situ reduction of the Co(3)O(4) by a carbothermal route yields a CoO-Co-C nanocomposite. The formation of this material substantially enhances the long-term cycling stability and coulombic efficiency of the lithium-ion active material used. Although the metallic cobalt enhances the electronic conductivity within the electrode and remains electrochemically inactive (as revealed by in situ powder X-ray diffraction analysis), it might have a detrimental effect on the long-term cycling stability by catalytically inducing continuous electrolyte decomposition.

8.
Int J Mol Sci ; 15(8): 14868-90, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25153637

ABSTRACT

The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator+Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI--based electrolytes (contrary to TFSI--based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI>PYR14FSI>PYR14TFSI>PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies.


Subject(s)
Electric Power Supplies , Ionic Liquids/chemistry , Lithium/chemistry , Electrodes
9.
Int J Mol Sci ; 15(5): 8122-37, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24815072

ABSTRACT

In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.


Subject(s)
Electric Power Supplies , Ionic Liquids/chemistry , Electrodes , Electrolytes/chemistry , Hydrocarbons, Fluorinated/chemistry , Imides/chemistry , Lithium/chemistry , Pyrrolidines/chemistry
10.
Phys Chem Chem Phys ; 15(7): 2565-71, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23302957

ABSTRACT

New ionic liquids with an asymmetric anion, fluorosulfonyl-(trifluoromethanesulfonyl)imide (FTFSI), were prepared and their chemical-physical properties were investigated. The ionic liquids based on N-methyl-N-propylpyrrolidinium, PYR(13), N-butyl-N-methylpyrrolidinium, PYR(14), and N-methoxyethyl-N-methylpyrrolidinium, PYR(12O1), exhibit high electrochemical stability (>5.5 V on platinum) and thermal stability (>250 °C in N(2) and >200 °C in O(2)). Due to the highly asymmetric anion, the prepared ionic liquids do not crystallize down to -150 °C while maintaining ionic conductivity above 10(-4) S cm(-1) even at -40 °C. Conductivity and viscosity values at 20 °C are in the range 3.5-5.0 mS cm(-1) and 30-60 mPa s respectively. PFG-NMR measurements showed high self-diffusion coefficients of cations and the anion.

11.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): m749, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22719309

ABSTRACT

The title compound {systematic name: poly[[aqua-lithium]-µ-3,3,8,8-tetra-methyl-1,4,6,9-tetra-oxa-5λ(4)-borataspiro-[4.4]nonane-2,7-dione]}, [Li(C(8)H(12)BO(6))(H(2)O)](n) (LiBMLB), forms a 12-membered macrocycle, which lies across a crystallographic inversion center. The lithium cations are pseudo-tetra-hedrally coordinated by three methyl-lactate ligands and a water mol-ecule. The asymmetric units couple across crystallographic inversion centers, forming the 12-membered macrocycles. These macrocycles, in turn, cross-link through the Li(+) cations, forming an infinite polymeric structure in two dimensions parallel to (101).

12.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35564145

ABSTRACT

The necessity for large scale and sustainable energy storage systems is increasing. Lithium-ion batteries have been extensively utilized over the past decades for a range of applications including electronic devices and electric vehicles due to their distinguishing characteristics. Nevertheless, their massive deployment can be questionable due to use of critical materials as well as limited lithium resources and growing costs of extraction. One of the emerging alternative candidates is potassium-ion battery technology due to potassium's extensive reserves along with its physical and chemical properties similar to lithium. The challenge to develop anode materials with good rate capability, stability and high safety yet remains. Iron oxides are potentially promising anodes for both battery systems due to their high theoretical capacity, low cost and abundant reserves, which aligns with the targets of large-scale application and limited environmental footprint. However, they present relevant limitations such as low electronic conductivity, significant volume changes and inadequate energy efficiency. In this review, we discuss some recent design strategies of iron oxide-based materials for both electrochemical systems and highlight the relationships of their structure performance in nanostructured anodes. Finally, we outline challenges and opportunities for these materials for possible development of KIBs as a complementary technology to LIBs.

13.
ACS Appl Mater Interfaces ; 13(29): 34227-34237, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34264641

ABSTRACT

Lithium metal batteries are gaining increasing attention due to their potential for significantly higher theoretical energy density than conventional lithium ion batteries. Here, we present a novel mechanochemical modification method for lithium metal anodes, involving roll-pressing the lithium metal foil in contact with ionic liquid-based solutions, enabling the formation of an artificial solid electrolyte interphase with favorable properties such as an improved lithium ion transport and, most importantly, the suppression of dendrite growth, allowing homogeneous electrodeposition/-dissolution using conventional and highly conductive room temperature alkyl carbonate-based electrolytes. As a result, stable cycling in symmetrical Li∥Li cells is achieved even at a high current density of 10 mA cm-2. Furthermore, the rate capability and the capacity retention in NMC∥Li cells are significantly improved.

14.
ACS Appl Mater Interfaces ; 12(39): 43596-43604, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32840344

ABSTRACT

Voltage decay during cycling is still a major issue for Li-rich cathodes in lithium ion batteries. Recently, the increase of Ni content has been recognized as an effective way to mitigate this problem, although it leads to lower-capacity materials. To find a balance between voltage decay and high capacity, particles of Li-rich materials with concentration gradients of transition metals have been prepared. Since voltage decay is caused by oxygen loss and phase transition that occur mainly on the particle surface, the Ni content is designed with a negative gradient of concentration from the surface to the bulk of particles. To do so, microsized Li1.20Ni0.13Co0.13Mn0.54O2 particles are mixed with much smaller LiNi0.8Co0.1Mn0.1O2 particles to form deposits of small particles onto larger particles. The concentration gradient of Ni is achieved as the Ni ions in LiNi0.8Co0.1Mn0.1O2 penetrate into Li1.20Ni0.13Co0.13Mn0.54O2 during a calcination post-treatment. Gradient samples show superior cycling performance and voltage retention as well as improved safety. This systematic study explores a material model combining Li-rich and high-Ni layered cathodes that is shown to be effective in creating a balance between mitigated voltage decay and high energy density.

15.
ACS Appl Mater Interfaces ; 12(4): 5017-5024, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31903747

ABSTRACT

P2-type Fe- and Mn-based layered sodium transition metal oxides are promising positive electrode materials for sodium batteries due to their high energy density and low costs of the constituting transition metals. However, poor structural reversibility and fast capacity decay have prevented their breakthrough so far. Herein, the real-time dynamic phase transitions and capacity fading mechanism of the P2 Na0.67Fe0.5Mn0.5O2 positive electrode are revealed by operando X-ray diffraction, operando/ex situ X-ray absorption spectroscopy, neutron powder diffraction, and neutron pair distribution functions. Upon the desodiation process, a layered OP4 phase with long-range order is found as an intermediate state. With further deep desodiation, the formation of a Na-depleted ramsdellite phase with a short coherent length of 30 Å is observed for the first time. However, the transition from OP4 to ramsdellite is considered to be irreversible due to the breakdown of the layered structural characteristics, resulting in poor cycling performance in a variety of Fe-based layered sodium transition metal oxides. This work suggests that stabilizing the crystal structure by substitution or chemical modification can be a favorable strategy to avoid the degradation of positive electrodes and thus to improve the cycling performance.

16.
RSC Adv ; 9(47): 27574-27582, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-35529199

ABSTRACT

Since PMMA-based gel polymer electrolytes could substitute PVDF-HFP based gels currently used in Li-ion batteries at lower financial and environmental costs, we investigate here the solvation and transport properties of the lithium ions in a crosslinked PMMA-based gel polymer electrolyte by a combination of thermal and electrochemical methods, Raman spectroscopy, pulse field gradient (PFG) and electrophoretic NMR (eNMR) techniques, as well as ab initio calculations. The conductivity of the gel containing 10 wt% polymer is only reduced by 14% relative to the liquid electrolyte. In addition, the co-solvation by polymer functional groups, a priori expected to slow lithium transport relatively to the anion, has instead a positive effect on lithium transport. Indeed, the ester groups not only participate in lithium solvation and increase ionic dissociation, but since this interaction is rather weak, rather than lowering the lithium diffusion relatively to other species, it mainly decorrelates lithium transport from anionic mobility. Compared to its liquid fraction, the gels show, at the same time, better dissociation and a higher lithium transference number, which results in a higher cationic conductivity, despite the overall conductivity loss.

17.
Nat Commun ; 9(1): 5320, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552314

ABSTRACT

The continuously increasing number and size of lithium-based batteries developed for large-scale applications raise serious environmental concerns. Herein, we address the issues related to electrolyte toxicity and safety by proposing a "water-in-ionomer" type of electrolyte which replaces organic solvents by water and expensive and toxic fluorinated lithium salts by a non-fluorinated, inexpensive and non-toxic superabsorbing ionomer, lithium polyacrylate. Interestingly, the electrochemical stability window of this electrolyte is extended greatly, even for high water contents. Particularly, the gel with 50 wt% ionomer exhibits an electrochemical stability window of 2.6 V vs. platinum and a conductivity of 6.5 mS cm-1 at 20 °C. Structural investigations suggest that the electrolytes locally self-organize and most likely switch local structures with the change of water content, leading to a 50% gel with good conductivity and elastic properties. A LiTi2(PO4)3/LiMn2O4 lithium-ion cell incorporating this electrolyte provided an average discharge voltage > 1.5 V and a specific energy of 77 Wh kg-1, while for an alternative cell chemistry, i.e., TiO2/LiMn2O4, a further enhanced average output voltage of 2.1 V and an initial specific energy of 124.2 Wh kg-1 are achieved.

18.
ACS Appl Mater Interfaces ; 7(10): 5950-8, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25714124

ABSTRACT

In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

19.
Adv Mater ; 27(5): 784-800, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25645073

ABSTRACT

Lithium/air is a fascinating energy storage system. The effective exploitation of air as a battery electrode has been the long-time dream of the battery community. Air is, in principle, a no-cost material characterized by a very high specific capacity value. In the particular case of the lithium/air system, energy levels approaching that of gasoline have been postulated. It is then not surprising that, in the course of the last decade, great attention has been devoted to this battery by various top academic and industrial laboratories worldwide. This intense investigation, however, has soon highlighted a series of issues that prevent a rapid development of the Li/air electrochemical system. Although several breakthroughs have been achieved recently, the question on whether this battery will have an effective economic and societal impact remains. In this review, a critical evaluation of the progress achieved so far is made, together with an attempt to propose future R&D trends. A forecast on whether Li/air may have a role in the next years' battery technology is also postulated.

SELECTION OF CITATIONS
SEARCH DETAIL