Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934770

ABSTRACT

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Subject(s)
Kinesins , Osteogenesis Imperfecta , Animals , Humans , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Carrier Proteins/genetics , Down-Regulation , Kinesins/genetics , Kinesins/metabolism , NIH 3T3 Cells , Proteomics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37552066

ABSTRACT

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Subject(s)
Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Child , Zebrafish/genetics , Zebrafish/metabolism , Caenorhabditis elegans/metabolism , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Phenotype , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Megalencephaly/genetics , Developmental Disabilities/genetics , Mutation, Missense/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
3.
Hepatology ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557779

ABSTRACT

BACKGROUND AND AIMS: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS: Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS: These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.

4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35121658

ABSTRACT

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Subject(s)
Genetic Variation/genetics , Protein Precursors/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Proteins/genetics , rab5 GTP-Binding Proteins/genetics , Alveolar Epithelial Cells/metabolism , Animals , Caenorhabditis elegans/genetics , Humans , Lung/metabolism , Lung Diseases, Interstitial/genetics , Pulmonary Surfactants/metabolism
5.
Gastroenterology ; 163(1): 270-284, 2022 07.
Article in English | MEDLINE | ID: mdl-35301011

ABSTRACT

BACKGROUND & AIMS: Insulin signaling is known to regulate essential proteostasis mechanisms. METHODS: The analyses here examined effects of insulin signaling in the PiZ mouse model of α1-antitrypsin deficiency in which hepatocellular accumulation and proteotoxicity of the misfolded α1-antitrypsin Z variant (ATZ) causes liver fibrosis and cancer. RESULTS: We first studied the effects of breeding PiZ mice to liver-insulin-receptor knockout (LIRKO) mice (with hepatocyte-specific insulin-receptor gene disruption). The results showed decreased hepatic ATZ accumulation and liver fibrosis in PiZ x LIRKO vs PiZ mice, with reversal of those effects when we bred PiZ x LIRKO mice onto a FOXO1-deficient background. Increased intracellular degradation of ATZ mediated by autophagy was identified as the likely mechanism for diminished hepatic proteotoxicity in PiZ x LIRKO mice and the converse was responsible for enhanced toxicity in PiZ x LIRKO x FOXO1-KO animals. Transcriptomic studies showed major effects on oxidative phosphorylation and autophagy genes, and significant induction of peroxisome proliferator-activated-receptor-γ-coactivator-1α (PGC1α) expression in PiZ-LIRKO mice. Because PGC1α plays a key role in oxidative phosphorylation, we further investigated its effects on ATZ proteostasis in our ATZ-expressing mammalian cell model. The results showed PGC1α overexpression or activation enhances autophagic ATZ degradation. CONCLUSIONS: These data implicate suppression of autophagic ATZ degradation by down-regulation of PGC1α as one mechanism by which insulin signaling exacerbates hepatic proteotoxicity in PiZ mice, and identify PGC1α as a novel target for development of new human α1-antitrypsin deficiency liver disease therapies.


Subject(s)
Insulin , Liver , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , alpha 1-Antitrypsin Deficiency , Animals , Insulin/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mammals/metabolism , Mice , Mice, Transgenic , Mutation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/pathology
6.
Mol Genet Metab ; 136(1): 65-73, 2022 05.
Article in English | MEDLINE | ID: mdl-35361529

ABSTRACT

We describe a proband evaluated through the Undiagnosed Diseases Network (UDN) who presented with microcephaly, developmental delay, and refractory epilepsy with a de novo p.Ala47Thr missense variant in the protein phosphatase gene, PPP5C. This gene has not previously been associated with a Mendelian disease, and based on the population database, gnomAD, the gene has a low tolerance for loss-of-function variants (pLI = 1, o/e = 0.07). We functionally evaluated the PPP5C variant in C. elegans by knocking the variant into the orthologous gene, pph-5, at the corresponding residue, Ala48Thr. We employed assays in three different biological processes where pph-5 was known to function through opposing the activity of genes, mec-15 and sep-1. We demonstrated that, in contrast to control animals, the pph-5 Ala48Thr variant suppresses the neurite growth phenotype and the GABA signaling defects of mec-15 mutants, and the embryonic lethality of sep-1 mutants. The Ala48Thr variant did not display dominance and behaved similarly to the reference pph-5 null, indicating that the variant is likely a strong hypomorph or complete loss-of-function. We conclude that pph-5 Ala48Thr is damaging in C. elegans. By extension in the proband, PPP5C p.Ala47Thr is likely damaging, the de novo dominant presentation is consistent with haplo-insufficiency, and the PPP5C variant is likely responsible for one or more of the proband's phenotypes.


Subject(s)
Developmental Disabilities , F-Box Proteins , Microcephaly , Nuclear Proteins , Phosphoprotein Phosphatases , Seizures , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Child , Developmental Disabilities/genetics , F-Box Proteins/genetics , Humans , Microcephaly/genetics , Mutation, Missense , Nuclear Proteins/genetics , Phenotype , Phosphoprotein Phosphatases/genetics , Seizures/genetics , Separase/genetics
7.
Mol Genet Metab ; 134(1-2): 195-202, 2021.
Article in English | MEDLINE | ID: mdl-34412939

ABSTRACT

Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.


Subject(s)
Carrier Proteins/genetics , Epilepsy/genetics , Genetic Variation , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Child , Female , Gene Editing , Humans , Pathology, Molecular , Potassium Channels/metabolism
8.
Int J Mol Sci ; 21(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325894

ABSTRACT

Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.


Subject(s)
Autophagy/drug effects , Drug Discovery/methods , Pharmacology/methods , Autophagy/genetics , Biomarkers , Brain/drug effects , Brain/metabolism , Computational Biology/methods , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation/drug effects , Humans , Liver/drug effects , Liver/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
9.
Br J Cancer ; 118(1): 72-78, 2018 01.
Article in English | MEDLINE | ID: mdl-29112685

ABSTRACT

BACKGROUND: Pretreatment serum squamous cell carcinoma antigen (SCCA) is a prognostic biomarker in women with cervical cancer. SCCA has not been evaluated as an early indicator of response to chemoradiation therapy (CRT). The molecular role of the two SCCA isoforms, SCCA1 (SERPINB3) and SCCA2 (SERPINB4), in cervical cancer is unknown. We hypothesised that changes in serum SCCA during definitive CRT predicts treatment response, and that SCCA1 mediates radiation resistance. METHODS: Patients treated with definitive CRT for cervical squamous carcinoma with serum SCCA measured were included. SCCA immunohistochemistry was performed on tumour biopsies. Post-treatment FDG-PET/CT, recurrence, and overall survival were recorded. Radiation response of cervical tumour cell lines after SCCA1 expression or CRISPR/Cas9 knockout was evaluated by clonogenic survival assay. RESULTS: Persistently elevated serum SCCA during definitive CRT was an independent predictor of positive post-therapy FDG-PET/CT (P=0.043), recurrence (P=0.0046) and death (P=0.015). An SCCA1-expressing vector increased radioresistance, while SCCA knock out increased radiosensitivity of cervical tumour cell lines in vitro. CONCLUSIONS: Early response assessment with serum SCCA is a powerful prognostic tool. These findings suggest that escalation of therapy in patients with elevated or sustained serum SCCA and molecular targeting of SCCA1 should be considered.


Subject(s)
Antigens, Neoplasm/blood , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/blood , Carcinoma, Squamous Cell/therapy , Chemoradiotherapy/methods , Serpins/blood , Serpins/metabolism , Uterine Cervical Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Dose Fractionation, Radiation , Female , Gene Knockdown Techniques , Humans , Middle Aged , Serpins/genetics , Survival Analysis , Treatment Outcome , Up-Regulation , Uterine Cervical Neoplasms/blood , Uterine Cervical Neoplasms/metabolism
10.
J Biol Chem ; 290(50): 29742-57, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26494620

ABSTRACT

Recent studies have shown that autophagy mitigates the pathological effects of proteinopathies in the liver, heart, and skeletal muscle but this has not been investigated for proteinopathies that affect the lung. This may be due at least in part to the lack of an animal model robust enough for spontaneous pathological effects from proteinopathies even though several rare proteinopathies, surfactant protein A and C deficiencies, cause severe pulmonary fibrosis. In this report we show that the PiZ mouse, transgenic for the common misfolded variant α1-antitrypsin Z, is a model of respiratory epithelial cell proteinopathy with spontaneous pulmonary fibrosis. Intracellular accumulation of misfolded α1-antitrypsin Z in respiratory epithelial cells of the PiZ model resulted in activation of autophagy, leukocyte infiltration, and spontaneous pulmonary fibrosis severe enough to elicit functional restrictive deficits. Treatment with autophagy enhancer drugs or lung-directed gene transfer of TFEB, a master transcriptional activator of the autophagolysosomal system, reversed these proteotoxic consequences. We conclude that this mouse is an excellent model of respiratory epithelial proteinopathy with spontaneous pulmonary fibrosis and that autophagy is an important endogenous proteostasis mechanism and an attractive target for therapy.


Subject(s)
Autophagy/drug effects , Genetic Therapy , alpha 1-Antitrypsin Deficiency/therapy , Animals , Autophagy/genetics , Disease Models, Animal , Epithelial Cells/pathology , Lung/pathology , Mice , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin Deficiency/pathology
11.
Hum Mol Genet ; 23(19): 5123-32, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24838285

ABSTRACT

α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options.


Subject(s)
Drug Discovery , Genome-Wide Association Study , RNA Interference , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin/genetics , Animals , Caenorhabditis elegans , Computational Biology , Disease Models, Animal , Genomics , High-Throughput Screening Assays , Humans , Mutation , Protein Binding , Proteostasis Deficiencies/genetics , Reproducibility of Results , alpha 1-Antitrypsin Deficiency/drug therapy
12.
Hum Mol Genet ; 23(19): 5109-22, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24838286

ABSTRACT

The accumulation of serpin oligomers and polymers within the endoplasmic reticulum (ER) causes cellular injury in patients with the classical form α1-antitrypsin deficiency (ATD). To better understand the cellular and molecular genetic aspects of this disorder, we generated transgenic C. elegans strains expressing either the wild-type (ATM) or Z mutant form (ATZ) of the human serpin fused to GFP. Animals secreted ATM, but retained polymerized ATZ within dilated ER cisternae. These latter animals also showed slow growth, smaller brood sizes and decreased longevity; phenotypes observed in ATD patients or transgenic mouse lines expressing ATZ. Similar to mammalian models, ATZ was disposed of by autophagy and ER-associated degradation pathways. Mutant strains defective in insulin signaling (daf-2) also showed a marked decrease in ATZ accumulation. Enhanced ATZ turnover was associated with the activity of two proteins central to systemic/exogenous (exo)-RNAi pathway: the dsRNA importer, SID-1 and the argonaute, RDE-1. Animals with enhanced exo-RNAi activity (rrf-3 mutant) phenocopied the insulin signaling mutants and also showed increased ATZ turnover. Taken together, these studies allude to the existence of a novel proteostasis pathway that mechanistically links misfolded protein turnover to components of the systemic RNAi machinery.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA Interference , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans Proteins/genetics , Cell Line , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum-Associated Degradation , Gene Expression , Genes, Reporter , Humans , Insulin/metabolism , Mice , Mice, Transgenic , Mutation , Phenotype , Promoter Regions, Genetic , Proteolysis , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Serpins , Signal Transduction , Sodium-Hydrogen Exchangers/genetics , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin Deficiency/metabolism
13.
Biochemistry ; 54(45): 6756-9, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26497600

ABSTRACT

The clade B/intracellular serpins protect cells from peptidase-mediated injury by forming covalent complexes with their targets. SERPINB12 is expressed in most tissues, especially at cellular interfaces with the external environment. This wide tissue distribution pattern is similar to that of granzyme A (GZMA). Because SERPINB12 inhibits trypsin-like serine peptidases, we determined whether it might also neutralize GZMA. SERPINB12 formed a covalent complex with GZMA and inhibited the enzyme with typical serpin slow-binding kinetics. SERPINB12 also inhibited Hepsin. SERPINB12 may function as an endogenous inhibitor of these peptidases.


Subject(s)
Granzymes/antagonists & inhibitors , Serine Endopeptidases/drug effects , Serpins/metabolism , Granzymes/metabolism , Humans , Kinetics , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , Protein Denaturation , Protein Interaction Mapping , Recombinant Fusion Proteins/metabolism
14.
Methods ; 68(3): 529-35, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24990146

ABSTRACT

Recent breakthrough discoveries have shown that committed cell fates can be reprogrammed by genetic, chemical and environmental manipulations. The germline of the nematode Caenorhabditis elegans provides a tractable system for studying cell fate reprogramming within the context of a whole organism. To explore the possibility of using C. elegans in high-throughput screens (HTS), we developed a high-throughput workflow for testing compounds that modulate cell fate reprogramming. We utilized puf-8; lip-1 mutants that have enhanced MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling. Wild-type C. elegans hermaphrodites produce both sperm and oocytes, and are thus self-fertile. However, puf-8; lip-1 mutants produce only sperm and are sterile. Notably, compounds that pharmacologically down-regulate MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling are able to reprogram germ cell fate and restore fertility to these animals. puf-8; lip-1 mutants provide numerous challenges for HTS. First, they are sterile as homozygotes and must be maintained as heterozygotes using a balancer chromosome. Second, homozygous animals for experimentation must be physically separated from the rest of the population. Third, a high quality, high-content assay has not been developed to measure compound effects on germ cell fate reprogramming. Here we describe a semi-automated high-throughput workflow that enables effective sorting of homozygous puf-8; lip-1 mutants into 384-well plates using the COPAS™ BIOSORT. In addition, we have developed an image-based assay for rapidly measuring germ cell reprogramming by measuring the number of viable progeny in wells. The methods presented in this report enable the use of puf-8; lip-1 mutants in HTS campaigns for chemical modulators of germ cell reprogramming within the context of a whole organism.


Subject(s)
Caenorhabditis elegans/drug effects , Cellular Reprogramming/drug effects , Germ Cells/drug effects , Small Molecule Libraries/administration & dosage , Animals , Caenorhabditis elegans/growth & development , Cell Lineage/drug effects , High-Throughput Screening Assays , Male , Signal Transduction/drug effects
15.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066314

ABSTRACT

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Subject(s)
Calcineurin , Huntington Disease , Humans , Aged , Calcineurin/genetics , Huntington Disease/genetics , Aging/genetics , Transcription Factors/metabolism , Corpus Striatum/metabolism , DNA-Binding Proteins/metabolism , Muscle Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
16.
Cell Mol Gastroenterol Hepatol ; 17(6): 1007-1024, 2024.
Article in English | MEDLINE | ID: mdl-38336172

ABSTRACT

BACKGROUND & AIMS: In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS: We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS: Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS: Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum , Lysosomes , Macroautophagy , Proteostasis , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , alpha 1-Antitrypsin Deficiency/pathology , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism , Humans , Lysosomes/metabolism , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin/genetics , Endoplasmic Reticulum/metabolism , CRISPR-Cas Systems , Autophagy/genetics , Gene Editing
17.
Res Sq ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214956

ABSTRACT

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

18.
Commun Biol ; 5(1): 46, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022555

ABSTRACT

The endogenous lysosomal cysteine protease inhibitor SERPINB3 (squamous cell carcinoma antigen 1, SCCA1) is elevated in patients with cervical cancer and other malignancies. High serum SERPINB3 is prognostic for recurrence and death following chemoradiation therapy. Cervical cancer cells genetically lacking SERPINB3 are more sensitive to ionizing radiation (IR), suggesting this protease inhibitor plays a role in therapeutic response. Here we demonstrate that SERPINB3-deficient cells have enhanced sensitivity to IR-induced cell death. Knock out of SERPINB3 sensitizes cells to a greater extent than cisplatin, the current standard of care. IR in SERPINB3 deficient cervical carcinoma cells induces predominantly necrotic cell death, with biochemical and cellular features of lysoptosis. Rescue with wild-type SERPINB3 or a reactive site loop mutant indicates that protease inhibitory activity is required to protect cervical tumor cells from radiation-induced death. Transcriptomics analysis of primary cervix tumor samples and genetic knock out demonstrates a role for the lysosomal protease cathepsin L in radiation-induced cell death in SERPINB3 knock-out cells. These data support targeting of SERPINB3 and lysoptosis to treat radioresistant cervical cancers.


Subject(s)
Antigens, Neoplasm/genetics , Cathepsin L/antagonists & inhibitors , Cell Death , Radiation, Ionizing , Serpins/genetics , Uterine Cervical Neoplasms/drug therapy , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Female , Humans , Mice , Neoplastic Cells, Circulating/drug effects , Serpins/metabolism , Xenograft Model Antitumor Assays
19.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Article in English | MEDLINE | ID: mdl-36303071

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Subject(s)
Huntington Disease , MicroRNAs , Humans , Animals , Huntington Disease/pathology , Corpus Striatum/physiology , Neurons/physiology , Autophagy , MicroRNAs/genetics , Disease Progression , Disease Models, Animal
20.
Commun Biol ; 5(1): 47, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022507

ABSTRACT

Lysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.


Subject(s)
Antigens, Neoplasm/genetics , Cell Death , Epithelial Cells/physiology , Serpins/genetics , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Humans , Mice , Serpins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL