Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Theor Appl Genet ; 135(3): 1049-1081, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34985537

ABSTRACT

KEY MESSAGE: In wheat, 2852 major QTLs of 8998 QTLs available for yield and related traits were used for meta-analysis; 141 meta-QTLs were identified, which included 13 breeder's MQTLs and 24 ortho-MQTLs; 1202 candidate genes and 50 homologues of genes for yield from other cereals were also identified. Meta-QTL analysis was conducted using 2852 of the 8998 known QTLs, retrieved from 230 reports published during 1999-2020 (including 19 studies on tetraploid wheat) for grain yield (GY) and the following ten component traits: (i) grain weight (GWei), (ii) grain morphology-related traits (GMRTs), (iii) grain number (GN), (iv) spikes-related traits (SRTs), (v) plant height (PH), (vi) tiller number (TN), (vii) harvest index (HI), (viii) biomass yield (BY), (ix) days to heading/flowering and maturity (DTH/F/M), and (x) grain filling duration (GFD). The study resulted in the identification of 141 meta-QTLs (MQTLs), with an average confidence interval (CI) of 1.4 cM as against a CI of > 12.1 cM (8.8 fold reduction) in the QTLs that were used. The corresponding physical length of CI ranged from 0.01 Mb to 661.9 Mb (mean, 31.5 Mb). Seventy-seven (77) of these 141 MQTLs overlapped marker-trait associations (MTAs) reported in genome-wide association studies. Also, 63 MQTLs (each based on at least 10 QTLs) were considered stable and robust, with 13 MQTLs described as breeder's MQTLs (selected based on small CI, large LOD, and high level of phenotypic variation explained). Thirty-five yield-related genes from rice, barley, and maize were also utilized to identify 50 wheat homologues in MQTLs. Further, the use of synteny and collinearity allowed the identification of 24 ortho-MQTLs which were common among the wheat, barley, rice, and maize. The results of the present study should prove useful for wheat breeding and future basic research in cereals including wheat, barley, rice, and maize.


Subject(s)
Edible Grain , Triticum , Edible Grain/genetics , Genome-Wide Association Study , Phenotype , Plant Breeding , Quantitative Trait Loci , Triticum/genetics
2.
Theor Appl Genet ; 135(7): 2385-2405, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35699741

ABSTRACT

KEY MESSAGE: In wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide. In the present study, meta-QTLs and candidate genes for multiple disease resistance (MDR) involving all three rusts were identified using 152 individual QTL mapping studies for resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR). From these 152 studies, a total of 1,146 QTLs for resistance to three rusts were retrieved, which included 368 QTLs for LR, 291 QTLs for SR, and 487 QTLs for YR. Of these 1,146 QTLs, only 718 QTLs could be projected onto the consensus map saturated with 2, 34,619 markers. Meta-analysis of the projected QTLs resulted in the identification of 86 MQTLs, which included 71 MDR-MQTLs. Ten of these MDR-MQTLs were referred to as the 'Breeders' MQTLs'. Seventy-eight of the 86 MQTLs could also be anchored to the physical map of the wheat genome, and 54 MQTLs were validated by marker-trait associations identified during earlier genome-wide association studies. Twenty MQTLs (including 17 MDR-MQTLs) identified in the present study were co-localized with 44 known R genes. In silico expression analysis allowed identification of several differentially expressed candidate genes (DECGs) encoding proteins carrying different domains including the following: NBS-LRR, WRKY domains, F-box domains, sugar transporters, transferases, etc. The introgression of these MDR loci into high-yielding cultivars should prove useful for developing high yielding cultivars with resistance to all the three rusts.


Subject(s)
Basidiomycota , Disease Resistance , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
3.
Mol Breed ; 42(3): 11, 2022 Mar.
Article in English | MEDLINE | ID: mdl-37309411

ABSTRACT

In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01282-z.

4.
Physiol Mol Biol Plants ; 27(12): 2767-2786, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35035135

ABSTRACT

A meta-analysis of QTLs associated with the traits contributing to salinity tolerance was undertaken in wheat to detect consensus and robust meta-QTLs (MQTLs) using 844 known QTLs retrieved from 26 earlier studies. A consensus map with a total length of 4621.56 cM including 7710 markers was constructed using 21 individual linkage maps and three previously published integrated genetic maps. Out of 844 QTLs, 571 QTLs were projected on the consensus map which gave origin to 100 MQTLs. Interestingly, 49 MQTLs were co-located with marker-trait associations reported in wheat genome-wide association studies for the traits contributing to salinity stress tolerance. Five potential MQTLs associated with the major salinity-responsive traits were also identified to be utilized in the breeding programme. In the resulted MQTLs, the average confidence interval (CI, 3.58 cM) was reduced up to 4.16 folds compared to the mean CI of the initial QTLs. Furthermore, as many as 617 gene models including 81 most likely candidate genes (CGs) were identified in the high confidence MQTL regions. These most likely CGs encoded proteins mainly belonging to the following families: B-box-type zinc finger, cytochrome P450 protein, pentatricopeptide repeat, phospholipid/glycerol acyltransferase, F-box protein, small auxin-up RNA, UDP-glucosyltransferase, glutathione S-transferase protein, etc. In addition, ortho-MQTL analysis based on synteny among wheat, rice and barley was also performed which permitted the identification of six ortho-MQTLs among these three cereals. This meta-analysis defines a genome-wide landscape on the most stable and consistent loci associated with reliable molecular markers and candidate genes for salinity tolerance in wheat. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01112-0.

5.
Physiol Mol Biol Plants ; 27(10): 2245-2267, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744364

ABSTRACT

In wheat, meta-QTLs (MQTLs), ortho-MQTLs, and candidate genes (CGs) were identified for nitrogen use efficiency and root system architecture. For this purpose, 1788 QTLs were available from 24 studies published during 2006-2020. Of these, 1098 QTLs were projected onto the consensus map resulting in 118 MQTLs. The average confidence interval (CI) of MQTLs was reduced up to 8.56 folds in comparison to the average CI of QTLs. Of the 118 MQTLs, 112 were anchored to the physical map of the wheat reference genome. The physical interval of MQTLs ranged from 0.02 to 666.18 Mb with a mean of 94.36 Mb. Eighty-eight of these 112 MQTLs were verified by marker-trait associations (MTAs) identified in published genome-wide association studies (GWAS); the MQTLs that were verified using GWAS also included 9 most robust MQTLs, which are particularly useful for breeders; we call them 'Breeder's QTLs'. Some selected wheat MQTLs were further utilized for the identification of ortho-MQTLs for wheat and maize; 9 such ortho-MQTLs were available. As many as 1991 candidate genes (CGs) were also detected, which included 930 CGs with an expression level of > 2 transcripts per million in relevant organs/tissues. Among the CGs, 97 CGs with functions previously reported as important for the traits under study were selected. Based on homology analysis and expression patterns, 49 orthologues of 35 rice genes were also identified in MQTL regions. The results of the present study may prove useful for the improvement of selection strategy for yield potential, stability, and performance under N-limiting conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01085-0.

6.
Sci Rep ; 12(1): 13680, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953529

ABSTRACT

In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.


Subject(s)
Plant Breeding , Triticum , Breeding , Consensus , Genome-Wide Association Study , Genomics , Stress, Physiological/genetics , Triticum/genetics
7.
Front Plant Sci ; 13: 1067063, 2022.
Article in English | MEDLINE | ID: mdl-36483946

ABSTRACT

In wheat, lodging is affected by anatomical and chemical characteristics of the stem cell wall. Plant characteristics determining the stem strength were measured in lodging tolerant mutant (PMW-2016-1) developed through mutation breeding utilizing hexaploid wheat cultivar, DPW-621-50. Various anatomical features, chemical composition, and mechanical strength of the culms of newly developed lodging-tolerant mutant (PMW-2016-1) and parent (DPW-621-50), were examined by light microscopy, the Klason method, prostate tester coupled with a Universal Tensile Machine, and Fourier Transform Infrared Spectroscopy. Significant changes in the anatomical features, including the outer radius of the stem, stem wall thickness, and the proportions of various tissues, and vascular bundles were noticed. Chemical analysis revealed that the lignin level in the PMW-2016-1 mutant was higher and exhibited superiority in stem strength compared to the DPW-621-50 parent line. The force (N) required to break the internodes of mutant PMW-2016-1 was higher than that of DPW-621-50. The results suggested that the outer stem radius, stem wall thickness, the proportion of sclerenchyma tissues, the number of large vascular bundles, and lignin content are important factors that affect the mechanical strength of wheat stems, which can be the key parameters for the selection of varieties having higher lodging tolerance. Preliminary studies on the newly identified mutant PMW-2016-1 suggested that this mutant may possess higher lodging tolerance because it has a higher stem strength than DPW-621-50 and can be used as a donor parent for the development of lodging-tolerant wheat varieties.

8.
Heliyon ; 7(4): e06894, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33937545

ABSTRACT

The prevalence of COVID-19 continues to rise with more than 114,315,846 million confirmed cases and 2,539,427 deaths worldwide by 3 March 2021 and this number kept on increasing day by day. There is no clear therapeutic treatment or vaccine available for COVID-19 till date and by seeing such a high rise in the cases of COVID-19 on daily basis, it would have been necessary to implement precautions and hygienic measures to monitor and reduce human-to-human transmission of SARS-CoV-2 before there is any successful intervention/treatment available. Currently, several studies demonstrated the important improvements in both the innate and adaptive immune systems of COVID-19 patients. In particular, pre-existing research, on immune response to B cell and T cells are highlighting that pre-existing immunity exists in about 90% of the general population because of previous exposure to CoVs and having immunity against these CoVs. Although it is not clear from, the current studies on COVID-19 but it assumed that, it might have implication to COVID-19 severity and could play an important role in treatment or vaccine development against COVID-19. This review summarizes the information from occurrence of SARS-CoV-2 to its pathogenesis, transmission, adaptive immune response with respect to T cell and B cell stimulation and therapeutic interventions/treatment against COVID-19.

9.
Indian J Psychiatry ; 46(3): 195-212, 2004 Jul.
Article in English | MEDLINE | ID: mdl-21224901

ABSTRACT

The information about Urban Mental Health Services has been nearly nonexistent in India, although the developed countries have been focusing on programmes for "Healthy Cities". The initiative taken as part of the WHO-ICMR Pilot Project on Urban Mental Health Services, with a public health perspective is being shared. The objectives of the Health Services Research (HSR) Arm of the project were to study the distribution and the availability of tertiary Mental Health Services, availability of human resources, average service load, mental health service gap, and perceptions of the users and the service providers, regarding the barriers in accessibility of mental health services, unmet service needs and strategies for improvement.The Research Methods involved Mapping Exercises with estimation of Service Loads and Qualitative Research Methods (QRM) like In-Depth Interviews (IDIs), Key Informant Interviews (KIIs), Free Listing and Focused Group Discussions (FGDs). The results indicate uneven availability of mental health services, human resource deficit specially for non-medical mental health professionals and mental health service gap (82% to96%). The average service load in the specialist mental health services is largely carried by the Govt. sector (half to two thirds), followed by the private sector (one third to half), with only a small portion by the NGO sector. The average mental health service load in the primary care general health services is largely carried by the private sector, with significant contribution from the non-formal service providers. The barriers to access, unmet needs and possible strategies as perceived by the community, users and service providers have been identified. The findings are discussed in the context of the mental health programmes and the public policy issues. The implications of the conclusions which suggest that Urban Mental Health Services are far from complete are highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL