Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Oncologist ; 25(4): e634-e643, 2020 04.
Article in English | MEDLINE | ID: mdl-31943574

ABSTRACT

BACKGROUND: Minimally invasive diagnostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are warranted to facilitate accurate diagnosis. This study identified diagnostic plasma proteins based on proteomics of tumor secretome. MATERIALS AND METHODS: Secretome of tumor and normal tissue was collected after resection of PDAC and dCCA. Differentially expressed proteins were measured by mass spectrometry. Selected candidate biomarkers and carbohydrate antigen 19-9 (CA19-9) were validated by enzyme-linked immunosorbent assay in plasma from patients with PDAC (n = 82), dCCA (n = 29), benign disease (BD; n = 30), and healthy donors (HDs; n = 50). Areas under the curve (AUCs) of receiver operator characteristic curves were calculated to determine the discriminative power. RESULTS: In tumor secretome, 696 discriminatory proteins were identified, including 21 candidate biomarkers. Thrombospondin-2 (THBS2) emerged as promising biomarker. Abundance of THBS2 in plasma from patients with cancer was significantly higher compared to HDs (p < .001, AUC = 0.844). Combined expression of THBS2 and CA19-9 yielded the optimal discriminatory capacity (AUC = 0.952), similarly for early- and late-stage disease (AUC = 0.971 and AUC = 0.911). Remarkably, this combination demonstrated a power similar to CA19-9 to discriminate cancer from BD (AUC = 0.764), and THBS2 provided an additive value in patients with high expression levels of bilirubin. CONCLUSION: Our proteome approach identified a promising set of candidate biomarkers. The combined plasma expression of THBS2/CA19-9 is able to accurately distinguish patients with PDAC or dCCA from HD and BD. IMPLICATIONS FOR PRACTICE: The combined plasma expression of thrombospondin-2 and carbohydrate antigen 19-9 is able to accurately diagnose patients with pancreatic cancer and distal cholangiocarcinoma. This will facilitate minimally invasive diagnosis for these patients by distinguishing them from healthy individuals and benign diseases.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Pancreatic Neoplasms , Bile Duct Neoplasms/diagnosis , Bile Ducts, Intrahepatic , Biomarkers, Tumor , CA-19-9 Antigen , Cholangiocarcinoma/diagnosis , Humans , Pancreatic Neoplasms/diagnosis , Proteome , Thrombospondins
2.
Cancers (Basel) ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383671

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is traditionally associated with thrombocytosis/hypercoagulation and novel insights on platelet-PDAC "dangerous liaisons" are warranted. Here we performed an integrative omics study investigating the biological processes of mRNAs and expressed miRNAs, as well as proteins in PDAC blood platelets, using benign disease as a reference for inflammatory noise. Gene ontology mining revealed enrichment of RNA splicing, mRNA processing and translation initiation in miRNAs and proteins but depletion in RNA transcripts. Remarkably, correlation analyses revealed a negative regulation on SPARC transcription by isomiRs involved in cancer signaling, suggesting a specific "education" in PDAC platelets. Platelets of benign patients were enriched for non-templated additions of G nucleotides (#ntaG) miRNAs, while PDAC presented length variation on 3' (lv3p) as the most frequent modification on miRNAs. Additionally, we provided an actionable repertoire of PDAC and benign platelet-ome to be exploited for future studies. In conclusion, our data show that platelets change their biological repertoire in patients with PDAC, through dysregulation of miRNAs and splicing factors, supporting the presence of de novo protein machinery that can "educate" the platelet. These novel findings could be further exploited for innovative liquid biopsies platforms as well as possible therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL