Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Bioconjug Chem ; 35(2): 265-275, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38340041

ABSTRACT

Despite significant progress in cancer imaging and treatment over the years, early diagnosis and metastasis detection remain a challenge. Molecular magnetic resonance imaging (MRI), with its high resolution, can be well adapted to fulfill this need, requiring the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast cancer and implicated in tumor progression and the appearance of metastasis. This study focuses on the design and preclinical evaluation of a novel Netrin-1-specific peptide-based MRI probe, GdDOTA-KKTHDAVR (Gd-K), to visualize metastatic breast cancer. The targeting peptide sequence was identified based on the X-ray structure of the complex between Netrin-1 and its transmembrane receptor DCC. Molecular docking simulations support the probe design. In vitro studies evidenced submicromolar affinity of Gd-K for Netrin-1 (KD = 0.29 µM) and good MRI efficacy (proton relaxivity, r1 = 4.75 mM-1 s-1 at 9.4 T, 37 °C). In vivo MRI studies in a murine model of triple-negative metastatic breast cancer revealed successful tumor visualization at earlier stages of tumor development (smaller tumor volume). Excellent signal enhancement, 120% at 2 min and 70% up to 35 min post injection, was achieved (0.2 mmol/kg injected dose), representing a reasonable imaging time window and a superior contrast enhancement in the tumor as compared to Dotarem injection.


Subject(s)
Biomarkers, Tumor , Triple Negative Breast Neoplasms , Mice , Humans , Animals , Molecular Probes , Netrin-1 , Molecular Docking Simulation , Contrast Media/chemistry , Peptides , Magnetic Resonance Imaging/methods
2.
Angew Chem Int Ed Engl ; 63(16): e202317728, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38376889

ABSTRACT

Applying a single molecular probe to monitor enzymatic activities in multiple, complementary imaging modalities is highly desirable to ascertain detection and to avoid the complexity associated with the use of agents of different chemical entities. We demonstrate here the versatility of lanthanide (Ln3+) complexes with respect to their optical and magnetic properties and their potential for enzymatic detection in NIR luminescence, CEST and T1 MR imaging, controlled by the nature of the Ln3+ ion, while using a unique chelator. Based on X-ray structural, photophysical, and solution NMR investigations of a family of Ln3+ DO3A-pyridine model complexes, we could rationalize the luminescence (Eu3+, Yb3+), CEST (Yb3+) and relaxation (Gd3+) properties and their variations between carbamate and amine derivatives. This allowed the design of L n L G a l 5 ${{{\bf L n L}}_{{\bf G a l}}^{5}}$ probes which undergo enzyme-mediated changes detectable in NIR luminescence, CEST and T1-weighted MRI, respectively governed by variations in their absorption energy, in their exchanging proton pool and in their size, thus relaxation efficacy. We demonstrate that these properties can be exploited for the visualization of ß-galactosidase activity in phantom samples by different imaging modalities: NIR optical imaging, CEST and T1-weighted MRI.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Luminescence , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Chelating Agents
3.
Chemistry ; 29(53): e202301442, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37606898

ABSTRACT

A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.

4.
J Am Chem Soc ; 144(48): 22212-22220, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36445192

ABSTRACT

As an essential metal ion and an efficient relaxation agent, Mn2+ holds a great promise to replace Gd3+ in magnetic resonance imaging (MRI) contrast agent applications, if its stable and inert complexation can be achieved. Toward this goal, four pyridine and one carboxylate pendants have been introduced in coordinating positions on the bispidine platform to yield ligand L3. Thanks to its rigid and preorganized structure and perfect size match for Mn2+, L3 provides remarkably high thermodynamic stability (log KMnL = 19.47), selectivity over the major biological competitor Zn2+ (log(KMnL/KZnL) = 4.4), and kinetic inertness. Solid-state X-ray data show that [MnL3(MeOH)](OTf)2 has an unusual eight-coordinate structure with a coordinated solvent molecule, in contrast to the six-coordinate structure of [ZnL3](OTf), underlining that the coordination cavity is perfectly adapted for Mn2+, while it is too large for Zn2+. In aqueous solution, 17O NMR data evidence one inner sphere water and dissociatively activated water exchange (kex298 = 13.5 × 107 s-1) for MnL3. Its water proton relaxivity (r1 = 4.44 mM-1 s-1 at 25 °C, 20 MHz) is about 30% higher than values for typical monohydrated Mn2+ complexes, which is related to its larger molecular size; its relaxation efficiency is similar to that of clinically used Gd3+-based agents. In vivo MRI experiments realized in control mice at 0.02 mmol/kg injected dose indicate good signal enhancement in the kidneys and fast renal clearance. Taken together, MnL3 is the first chelate that combines such excellent stability, selectivity, inertness and relaxation properties, all of primary importance for MRI use.


Subject(s)
Magnetic Resonance Imaging , Water , Animals , Mice , Thermodynamics
5.
Chemistry ; 27(6): 1864, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33258526

ABSTRACT

Invited for the cover of this issue are Jean-François Morfin and Éva Tóth at the CNRS in Orléans, and their collaborators from University of Debrecen, University of Coimbra and Université de Toulouse. The image depicts that when an amphiphilic compound is intravenously injected, monomer, pre-micellar and micellar forms can co-exist in the blood and have different affinities for amyloid peptides. Read the full text of the article at 10.1002/chem.202004000.


Subject(s)
Coordination Complexes/chemistry , Amyloid , Islet Amyloid Polypeptide
6.
Chemistry ; 27(6): 2009-2020, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33026686

ABSTRACT

Metal chelates targeted to amyloid peptides are widely explored as diagnostic tools or therapeutic agents. The attachment of a metal complex to amyloid recognition units typically leads to a decrease in peptide affinity. We show here that by separating a macrocyclic GdL chelate and a PiB targeting unit with a long hydrophobic C10 linker, it is possible to attain nanomolar affinities for both Aß1-40 (Kd =4.4 nm) and amylin (Kd =4.5 nm), implicated, respectively in Alzheimer's disease and diabetes. The Scatchard analysis of surface plasmon resonance data obtained for a series of amphiphilic, PiB derivative GdL complexes indicate that their Aß1-40 or amylin binding affinity varies with their concentration, thus micellar aggregation state. The GdL chelates also affect peptide aggregation kinetics, as probed by thioflavin-T fluorescence assays. A 2D NMR study allowed identifying that the hydrophilic region of Aß1-40 is involved in the interaction between the monomer peptide and the Gd3+ complex. Finally, ex vivo biodistribution experiments were conducted in healthy mice by using 111 In labeled analogues. Their pancreatic uptake, ∼3 %ID g-1 , is promising to envisage amylin imaging in diabetic animals.


Subject(s)
Coordination Complexes/chemistry , Alzheimer Disease , Amyloid , Amyloid beta-Peptides/metabolism , Animals , Islet Amyloid Polypeptide , Mice , Peptide Fragments/metabolism , Tissue Distribution
7.
Molecules ; 26(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802241

ABSTRACT

We report two macrocyclic ligands based on a 1,7-diaza-12-crown-4 platform functionalized with acetate (tO2DO2A2-) or piperidineacetamide (tO2DO2AMPip) pendant arms and a detailed characterization of the corresponding Mn(II) complexes. The X-ray structure of [Mn(tO2DO2A)(H2O)]·2H2O shows that the metal ion is coordinated by six donor atoms of the macrocyclic ligand and one water molecule, to result in seven-coordination. The Cu(II) analogue presents a distorted octahedral coordination environment. The protonation constants of the ligands and the stability constants of the complexes formed with Mn(II) and other biologically relevant metal ions (Mg(II), Ca(II), Cu(II) and Zn(II)) were determined using potentiometric titrations (I = 0.15 M NaCl, T = 25 °C). The conditional stabilities of Mn(II) complexes at pH 7.4 are comparable to those reported for the cyclen-based tDO2A2- ligand. The dissociation of the Mn(II) chelates were investigated by evaluating the rate constants of metal exchange reactions with Cu(II) under acidic conditions (I = 0.15 M NaCl, T = 25 °C). Dissociation of the [Mn(tO2DO2A)(H2O)] complex occurs through both proton- and metal-assisted pathways, while the [Mn(tO2DO2AMPip)(H2O)] analogue dissociates through spontaneous and proton-assisted mechanisms. The Mn(II) complex of tO2DO2A2- is remarkably inert with respect to its dissociation, while the amide analogue is significantly more labile. The presence of a water molecule coordinated to Mn(II) imparts relatively high relaxivities to the complexes. The parameters determining this key property were investigated using 17O NMR (Nuclear Magnetic Resonance) transverse relaxation rates and 1H nuclear magnetic relaxation dispersion (NMRD) profiles.

8.
Angew Chem Int Ed Engl ; 60(44): 23574-23577, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34387934

ABSTRACT

Drug-loaded liposomes are typical examples of nanomedicines. We show here that doxorubicin, the anti-cancer agent in the liposomal drug Doxil, can sensitize Ytterbium (Yb3+ ) and generate its near-infrared (NIR) emission. When doxorubicin and amphiphilic Yb3+ chelates are incorporated into liposomes, the sensitized emission of Yb3+ is dependent on the integrity of the particles, which can be used to monitor drug release. We also established the first demonstration that the NIR Yb3+ emission signal is observable in living mice following intratumoral injection of the Yb3+ -doxorubicin-liposomes, using a commercial macroscopic setup equipped with a NIR camera.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Breast Neoplasms/diagnostic imaging , Doxorubicin/analogs & derivatives , Luminescence , Ytterbium/chemistry , Animals , Cell Line, Tumor , Doxorubicin/chemistry , Drug Liberation , Female , Infrared Rays , Liposomes/chemistry , Magnetic Resonance Imaging , Mice , Molecular Structure , Polyethylene Glycols/chemistry
9.
Inorg Chem ; 59(19): 14389-14398, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32960580

ABSTRACT

With the aim of developing new molecular theranostic agents, a π-extended Zn(II) porphyrin as photosensitizer for photodynamic therapy (PDT) linked to two GdDOTA-type complexes for magnetic resonance imaging (MRI) detection was synthesized. The relaxivity studies revealed a much higher relaxivity value per Gd ion for this medium sized molecule (19.32 mM-1 s-1 at 20 MHz and 298 K) compared to clinical contrast agents-a value which strongly increases in the presence of bovine serum albumin, reaching 25.22 mM-1 s-1. Moreover, the photophysical studies showed the strong ability of the molecule to absorb light in the deep red (670 nm, ε ≈ 60000 M-1 cm-1) and in the near-infrared following two-photon excitation (920 nm, σ2 ≈ 650 GM). The conjugate is also able to generate singlet oxygen, with a quantum yield of 0.58 in DMSO. Promising results were obtained in cellular studies, demonstrating that the conjugate is internalized in HeLa cells at micromolar concentration and leads to 70% of cell death following 30 min irradiation at 660 nm. These results confirm the potential of the designed molecule as an imaging and therapeutic agent.


Subject(s)
Heterocyclic Compounds/chemistry , Magnetic Resonance Imaging , Organometallic Compounds/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Porphyrins/chemistry , Animals , Cattle , Chemistry Techniques, Synthetic , Contrast Media/chemical synthesis , Contrast Media/chemistry , HeLa Cells , Humans , Serum Albumin, Bovine/chemistry
10.
Inorg Chem ; 59(2): 1306-1314, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31909995

ABSTRACT

In this study, an original aza-BODIPY system comprising two Gd3+ complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displays an increased water solubility, optimized photophysical properties in the near-infrared region, and very promising relaxometric properties. The absorption and emission wavelengths are 705 and 741 nm, respectively, with a quantum yield of around 10% in aqueous media. Moreover, the system does not produce singlet oxygen upon excitation, which would be toxic for tissues. The relaxivity obtained is high at intermediate fields (16.1 mM-1 s-1 at 20 MHz and 310 K) and competes with that of bigger or more rigid systems. A full relaxometric and 17O NMR study and fitting of the data using the Lipari-Szabo approach showed that this high relaxivity can be explained by the size of the system and the presence of some small aggregates. These optimized photophysical and relaxometric properties highlight the potential use of such systems for future bimodal imaging studies.

11.
Angew Chem Int Ed Engl ; 59(29): 11958-11963, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32298021

ABSTRACT

The search for more biocompatible alternatives to Gd3+ -based MRI agents, and the interest in 52 Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+ , high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A-EA have dissociation half-lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm-1 s-1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1 . Additionally, L1 could be radiolabeled with 52 Mn and the complex revealed good stability in biological media.

12.
Inorg Chem ; 58(19): 13170-13183, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31524387

ABSTRACT

In an effort to explore novel ligand scaffolds for stable and inert lanthanide complexation in magnetic resonance imaging contrast agent research, three chiral ligands containing a highly rigid (1S,2S)-1,2-cyclobutanediamine spacer and different number of acetate and picolinate groups were efficiently synthesized. Potentiometric studies show comparable thermodynamic stability for the Gd3+ complexes formed with either the octadentate (L3)4- bearing two acetate or two picolinate groups or the heptadentate (L2)4- analogue bearing one picolinate and three acetate groups (log KGdL = 17.41 and 18.00 for [Gd(L2)]- and [Gd(L3)]-, respectively). In contrast, their dissociation kinetics is revealed to be very different: the monohydrated [Gd(L3)]- is considerably more labile, as a result of the significant kinetic activity of the protonated picolinate function, as compared to the bishydrated [Gd(L2)]-. This constitutes an uncommon example in which lowering ligand denticity results in a remarkable increase in kinetic inertness. Another interesting observation is that the rigid ligand backbone induces an unusually strong contribution of the spontaneous dissociation to the overall decomplexation process. Thanks to the presence of two inner-sphere water molecules, [Gd(L2)]- is endowed with high relaxivity (r1 = 7.9 mM-1 s-1 at 20 MHz, 25 °C), which is retained in the presence of large excess of endogenous anions, excluding ternary complex formation. The water exchange rate is similar for [Gd(L3)]- and [Gd(L2)]-, while it is 1 order of magnitude higher for the trishydrated tetraacetate analogue [Gd(L1)]- (kex298 = 8.1, 10, and 127 × 106 s-1, respectively). A structural analysis via density functional theory calculations suggests that the large bite angle imposed by the rigid (1S,2S)-1,2-cyclobutanediamine spacer could allow the design of ligands based on this scaffold with suitable properties for the coordination of larger metal ions with biomedical applications.

13.
Bioconjug Chem ; 29(11): 3726-3738, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30252449

ABSTRACT

A molecular theranostic agent designed for photodynamic therapy (PDT) treatment in the near-infrared and for imaging tissue tumors with magnetic resonance imaging (MRI) is reported. It consists of a linear π-conjugated Zn(II) porphyrin dimer linked at each extremity to a GdDOTA-type complex. This agent has shown very promising potential for PDT applications with good singlet oxygen generation in DMSO and high linear absorption in the near-infrared (λmax = 746 nm, ε ≈ 105 M-1 cm-1). Moreover, this molecule has a propensity for two-photon excited PDT with high two-photon cross sections (∼8000 GM in 880-930 nm range), which should allow for deeper tumor treatments and higher spatial precision as compared to conventional one-photon PDT. Regarding the MRI contrast agent properties, the molecule has shown superior relaxivity (14.4 mM-1 s-1 at 40 MHz, 298 K) in comparison to clinical contrast agents and the ability to be internalized in cells, thanks to its amphiphilic character. Irradiation of HeLa cells using either one-photon (740 nm) or two-photon excitation (910 nm) has led in both cases to important cell death.


Subject(s)
Heterocyclic Compounds/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Organometallic Compounds/therapeutic use , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Dimerization , HeLa Cells , Heterocyclic Compounds/chemistry , Humans , Magnetic Resonance Imaging/methods , Neoplasms/metabolism , Organometallic Compounds/chemistry , Photochemotherapy/methods , Photons , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Singlet Oxygen/metabolism , Theranostic Nanomedicine/methods
14.
Inorg Chem ; 55(9): 4545-54, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27074089

ABSTRACT

A molecular theranostic agent for magnetic resonance imaging (MRI) and photodynamic therapy (PDT) consisting of four [GdDTTA](-) complexes (DTTA(4-) = diethylenetriamine-N,N,N″,N″-tetraacetate) linked to a meso-tetraphenylporphyrin core, as well as its yttrium(III) analogue, was synthesized. A variety of physicochemical methods were used to characterize the gadolinium(III) conjugate 1 both as an MRI contrast agent and as a photosensitizer. The proton relaxivity measured in H2O at 20 MHz and 25 °C, r1 = 43.7 mmol(-1) s(-1) per gadolinium center, is the highest reported for a bishydrated gadolinium(III)-based contrast agent of medium size and can be related to the rigidity of the molecule. The complex displays also a remarkable singlet oxygen quantum yield of Ï•Δ = 0.45 in H2O, similar to that of a meso-tetrasulfonated porphyrin. We also evidenced the ability of the gadolinium(III) conjugate to penetrate in cancer cells with low cytotoxicity. Its phototoxicity on Hela cells was evaluated following incubation at low micromolar concentration and moderate light irradiation (21 J cm(-2)) induced 50% of cell death. Altogether, these results demonstrate the high potential of this conjugate as a theranostic agent for MRI and PDT.


Subject(s)
Coordination Complexes/pharmacology , Gadolinium/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Theranostic Nanomedicine , Cell Death/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , HeLa Cells , Humans , Light , Lysosomes/metabolism , Magnetic Resonance Imaging , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/toxicity , Porphyrins/chemical synthesis , Porphyrins/radiation effects , Porphyrins/toxicity , Proton Magnetic Resonance Spectroscopy , Solubility , Water/chemistry , Yttrium/chemistry
15.
Proc Natl Acad Sci U S A ; 110(43): 17199-204, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24108356

ABSTRACT

We have created unique near-infrared (NIR)-emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb(3+) lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb(3+) NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 µg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.


Subject(s)
Lanthanoid Series Elements/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Near-Infrared/methods , Ytterbium/chemistry , Animals , Crystallization , HeLa Cells , Humans , Lanthanoid Series Elements/pharmacokinetics , Metal Nanoparticles/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , NIH 3T3 Cells , Photons , Polyvinyl Chloride/analogs & derivatives , Polyvinyl Chloride/chemistry , Polyvinyl Chloride/pharmacokinetics , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction , Ytterbium/pharmacokinetics
16.
Inorg Chem ; 54(12): 5991-6003, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26030671

ABSTRACT

To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent GdDTPA (t1/2 = 5298 h for GdHYD vs 202 h for GdDTPA) is related to the rigidity of the HYD ligand due to the pyridine and methylated hydrazine functions of the backbone. A combined analysis of variable-temperature (17)O NMR and NMRD data on GdHYD yielded the microscopic parameters influencing relaxation properties. The high relaxivity (r1 = 7.7 mM(-1) s(-1) at 20 MHz, 25 °C) results from the bishydrated character of the complex combined with an optimized water exchange rate (kex(298) = 7.8 × 10(6) s(-1)). The two inner-sphere water molecules are not replaced through interaction with biological cations such as carbonate, citrate, and phosphate as monitored by (1)H relaxivity and luminescence lifetime measurements.


Subject(s)
Gadolinium/chemistry , Hydrazines/chemistry , Pyridines/chemistry , Chelating Agents/chemistry , Chemistry Techniques, Synthetic , Copper/chemistry , Gadolinium DTPA , Half-Life , Kinetics , Lanthanoid Series Elements/chemistry , Ligands , Magnetic Resonance Spectroscopy , Potentiometry , Spectrophotometry, Ultraviolet , Thermodynamics
17.
Inorg Chem ; 54(10): 4940-52, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25942280

ABSTRACT

We report two macrocyclic ligands containing a 1,10-diaza-18-crown-6 fragment functionalized with either two picolinamide pendant arms (bpa18c6) or one picolinamide and one picolinate arm (ppa18c6(-)). The X-ray structure of [La(ppa18c6)(H2O)](2+) shows that the ligand binds to the metal ion using the six donor atoms of the crown moiety and the four donor atoms of the pendant arms, 11-coordination being completed by the presence of a coordinated water molecule. The X-ray structure of the [Sr(bpa18c6)(H2O)](2+) was also investigated due to the very similar ionic radii of Sr(2+) and Eu(2+). The structure of this complex is very similar to that of [La(ppa18c6)(H2O)](2+), with the metal ion being 11-coordinated. Potentiometric measurements were used to determine the stability constants of the complexes formed with La(3+) and Eu(3+). Both ligands present a very high selectivity for the large La(3+) ion over the smaller Eu(3+), with a size-discrimination ability that exceeds that of the analogous ligand containing two picolinate pendant arms reported previously (bp18c6(2-)). DFT calculations using the TPSSh functional and the large-core pseudopotential approximation provided stability trends in good agreement with the experimental values, indicating that charge neutral ligands derived from 1,10-diaza-18-crown-6 enhance the selectivity of the ligand for the large Ln(3+) ions. Cyclic voltammetry measurements show that the stabilization of Eu(2+) by these ligands follows the sequence bp18c6(2-) < ppa18c6(-) < bpa18c6 with half-wave potentials of -753 mV (bp18c6(2-)), -610 mV (ppa18c6(-)), and -453 mV (bpa18c6) versus Ag/AgCl. These values reveal that the complex of bpa18c6 possesses higher stability against oxidation than the aquated ion, for which an E1/2 value of -585 mV has been measured.


Subject(s)
Aza Compounds/chemistry , Coordination Complexes/chemistry , Crown Ethers/chemistry , Europium/chemistry , Water/chemistry , Amides/chemistry , Aza Compounds/chemical synthesis , Cations, Divalent , Coordination Complexes/chemical synthesis , Crown Ethers/chemical synthesis , Electrochemical Techniques , Ligands , Models, Molecular , Molecular Conformation , Picolinic Acids/chemistry , Quantum Theory , Static Electricity
18.
Chemistry ; 20(35): 10959-69, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25116889

ABSTRACT

A series of novel pyridine-based Gd(3+) complexes have been prepared and studied as potential MRI contrast agents for Zn(2+) detection. By independent assessment of molecular parameters affecting relaxivity, we could interpret the relaxivity changes observed upon Zn(2+) binding in terms of variations of the rotational motion.


Subject(s)
Contrast Media/chemical synthesis , Gadolinium/chemistry , Magnetic Resonance Imaging , Zinc/analysis , Contrast Media/chemistry , Drug Stability , Fluorescent Dyes/chemistry , Ligands , Models, Molecular , Zinc/chemistry
19.
Dalton Trans ; 53(21): 9028-9041, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38726882

ABSTRACT

We investigated the coordination properties of original macrocyclic Ln3+ complexes comprising an imidazothiadiazole heterocycle. The thermodynamic stability of the Gd3+ complex was determined by a combination of potentiometric and photophysical measurements. The kinetic inertness was assessed in highly acidic media. The solution structure of the Ln3+ complex was unambiguously determined by a set of photophysical measurements and 1H, 13C, 89Y NMR data in combination with DFT calculations, which proved coordination of the heterocycle to Ln3+. The ability of the imidazothiadiazole moiety to sensitize Tb3+ luminescence was investigated. Finally, the relaxation properties were investigated by recording 1H nuclear magnetic relaxation dispersion (NMRD) profiles and 17O measurements. The water exchange rate is similar to that of GdDOTA as the less negative charge of the ligand is compensated for by the presence of a bulky heterocycle. Relaxivity is constant over a large range of pH values, demonstrating the favorable properties of the complex for imaging purposes.

20.
Dalton Trans ; 52(19): 6260-6266, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37129192

ABSTRACT

Two zinc finger peptides, namely ZFQDLn and ZFQELn (Ln = Tb or Gd), with an appended Ln3+ chelate and a phosphoserine able to coordinate the Ln3+ ion are presented. The two peptides differ by the amino acid anchorage of the chelate, either aspartate (D) or glutamate (E). Both peptides are able to bind Zn2+ and adopt the ßßα fold. Interestingly, ZFQETb shows a decrease in sensitized Tb3+ luminescence upon Zn2+ binding whereas ZFQDTb does not. The luminescence change upon Zn2+ binding is attributed to a change in hydration number (q) of the Tb3+ ion due to the decoordination of the phosphoserine from the Ln3+ ion upon Zn2+ binding and peptide folding. This process is highly sensitive to the length of the linker between the Ln chelate and the peptidic backbone. The magnetic properties of the gadolinium analogue ZFQEGd were studied. An impressive relaxivity increase of 140% is observed at 60 MHz and 25 °C upon Zn2+ binding. These changes can be attributed to a combined increase effect of the hydration number of Gd3+ and of the rigidity of the system upon Zn2+ binding. Phantom MR images at 9.4 T show a clear signal enhancement in the presence of Zn2+. These zinc finger peptides offer a unique platform to design such Zn-responsive probes.


Subject(s)
Gadolinium , Lanthanoid Series Elements , Gadolinium/chemistry , Zinc/chemistry , Lanthanoid Series Elements/chemistry , Phosphoserine , Magnetic Resonance Imaging/methods , Peptides , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL