Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Enzyme Inhib Med Chem ; 37(1): 629-640, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35100926

ABSTRACT

Pancreatic lipase (PL) is a well-known key target for the prevention and treatment of obesity. Human carboxylesterase 1A (hCES1A) has become an important target for the treatment of hyperlipidaemia. Thus, the discovery of potent dual-target inhibitors based on PL and hCES1A hold great potential for the development of remedies for treating related metabolic diseases. In this study, a series of natural triterpenoids were collected and the inhibitory effects of these triterpenoids on PL and hCES1A were determined using fluorescence-based biochemical assays. It was found that oleanolic acid (OA) and ursolic acid (UA) have the excellent inhibitory effects against PL and hCES1A, and highly selectivity over hCES2A. Subsequently, a number of compounds based on the OA and UA skeletons were synthesised and evaluated. Structure-activity relationship (SAR) analysis of these compounds revealed that the acetyl group at the C-3 site of UA (compound 41) was very essential for both PL and hCES1A inhibition, with IC50 of 0.75 µM and 0.014 µM, respectively. In addition, compound 39 with 2-enol and 3-ketal moiety of OA also has strong inhibitory effects against both PL and hCES1A, with IC50 of 2.13 µM and 0.055 µM, respectively. Furthermore, compound 39 and 41 exhibited good selectivity over other human serine hydrolases including hCES2A, butyrylcholinesterase (BChE) and dipeptidyl peptidase IV (DPP-IV). Inhibitory kinetics and molecular docking studies demonstrated that both compounds 39 and 41 were effective mixed inhibitors of PL, while competitive inhibitors of hCES1A. Further investigations demonstrated that both compounds 39 and 41 could inhibit adipocyte adipogenesis induced by mouse preadipocytes. Collectively, we found two triterpenoid derivatives with strong inhibitory ability on both PL and hCES1A, which can be served as promising lead compounds for the development of more potent dual-target inhibitors targeting on PL and hCES1A.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Pancreas/enzymology , Triterpenes/pharmacology , Carboxylic Ester Hydrolases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lipase/metabolism , Molecular Structure , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry
2.
Drug Metab Dispos ; 48(5): 345-352, 2020 05.
Article in English | MEDLINE | ID: mdl-32086296

ABSTRACT

Doxophylline (DOXO) and theophylline are widely used as bronchodilators for treating asthma and chronic obstructive pulmonary disease, and DOXO has a better safety profile than theophylline. How DOXO's metabolism and disposition affect its antiasthmatic efficacy and safety remains to be explored. In this study, the metabolites of DOXO were characterized. A total of nine metabolites of DOXO were identified in vitro using liver microsomes from human and four other animal species. Among them, six metabolites were reported for the first time. The top three metabolites were theophylline acetaldehyde (M1), theophylline-7-acetic acid (M2), and etophylline (M4). A comparative analysis of DOXO metabolism in human using liver microsomes, S9 fraction, and plasma samples demonstrated the following: 1) The metabolism of DOXO began with a cytochrome P450 (P450)-mediated, rate-limiting step at the C ring and produced M1, the most abundant metabolite in human liver microsomes. However, in human plasma, the M1 production was rather low. 2) M1 was further converted to M2 and M4, the end products of DOXO metabolism in vivo, by non-P450 dismutase in the cytosol. This dismutation process also relied on the ratio of NADP+/NADPH in the cell. These findings for the first time elucidated the metabolic sites and routes of DOXO metabolism in human. SIGNIFICANCE STATEMENT: We systematically characterized doxophylline metabolism using in vitro and in vivo assays. Our findings evolved the understandings of metabolic sites and pathways for methylxanthine derivatives with the aldehyde functional group.


Subject(s)
Acetaldehyde/metabolism , Bronchodilator Agents/pharmacokinetics , Liver/enzymology , Theophylline/analogs & derivatives , Theophylline/metabolism , Acetaldehyde/chemistry , Adult , Animals , Asthma/drug therapy , Bronchodilator Agents/administration & dosage , Cytochrome P-450 Enzyme System/metabolism , Female , Healthy Volunteers , Humans , Macaca fascicularis , Mice , Microsomes, Liver , Oxidation-Reduction , Pulmonary Disease, Chronic Obstructive/drug therapy , Rabbits , Rats , Theophylline/administration & dosage , Theophylline/chemistry , Theophylline/pharmacokinetics
3.
Sci Rep ; 14(1): 16071, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992150

ABSTRACT

Sepsis-induced acute lung injury (SALI) poses a significant threat with high incidence and mortality rates. Ginsenoside Rg1 (GRg1), derived from Ginseng in traditional Chinese medicine, has been found to reduce inflammation and protect lung epithelial cells against tissue damage. However, the specific roles and mechanisms by which GRg1 mitigates SALI have yet to be fully elucidated. In this context, we employed a relevant SALI mouse model, alongside network pharmacology, molecular docking, and molecular dynamics simulation to pinpoint GRg1's action targets, complemented by in vitro assays to explore the underlying mechanisms. Our research shows that GRg1 alleviates CLP-induced SALI, decreasing lung tissue damage and levels of serum proinflammatory factor IL-6, TNF-α, and IL-1ß, also enhancing the survival rate of CLP mice. A total of 116 common targets between GRg1 and ALI, with specific core targets including AKT1, VEGFA, SRC, IGF1, ESR1, STAT3, and ALB. Further in vitro experiments assessed GRg1's intervention effects on MLE-12 cells exposed to LPS, with qRT-PCR analysis and molecular dynamics simulations confirming AKT1 as the key target with the favorable binding activity for GRg1. Western blot results indicated that GRg1 increased the Bcl-2/Bax protein expression ratio to reduce apoptosis and decreased the high expression of cleaved caspase-3 in LPS-induced MLE-12 cells. More results showed significant increases in the phosphorylation of PI3K and AKT1. Flow cytometric analysis using PI and Annexin-V assays further verified that GRg1 decreased the apoptosis rate in LPS-stimulated MLE-12 cells (from 14.85 to 6.54%, p < 0.05). The employment of the AKT1 inhibitor LY294002 confirmed these trends, indicating that AKT1's inhibition negates GRg1's protective effects on LPS-stimulated MLE-12 cells. In conclusion, our research highlights GRg1's potential as an effective adjunct therapy for SALI, primarily by inhibiting apoptosis in alveolar epithelial cells and reducing pro-inflammatory cytokine secretion, thus significantly enhancing the survival rates of CLP mice. These beneficial effects are mediated through targeting AKT1 and activating the PI3K-AKT pathway.


Subject(s)
Acute Lung Injury , Ginsenosides , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sepsis , Signal Transduction , Ginsenosides/pharmacology , Ginsenosides/chemistry , Ginsenosides/therapeutic use , Animals , Proto-Oncogene Proteins c-akt/metabolism , Mice , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Male , Molecular Docking Simulation , Disease Models, Animal , Mice, Inbred C57BL , Apoptosis/drug effects , Cell Line , Lipopolysaccharides
4.
Biosensors (Basel) ; 11(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34436092

ABSTRACT

Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.


Subject(s)
Biosensing Techniques , Tyrosine/analysis , Humans , Kinetics , Melanoma , Monophenol Monooxygenase , Oxidation-Reduction , Skin Neoplasms , Spectrophotometry , Melanoma, Cutaneous Malignant
6.
Article in English | MEDLINE | ID: mdl-31015849

ABSTRACT

To investigate the mechanism of a Bushen-Jianpi decoction (BSJPD) in liver cancer (LC) treatment, we analyzed clinical therapy data, conducted network pharmacology analysis, and performed pharmacological experimental verification in vitro and in vivo. The univariate analysis of clinical therapy showed that the BSJPD was protective factor (p < 0.05). The network pharmacology analysis showed that 9 compounds were important nodes of BSJPD-LC therapy network. In experimental verification, the rate of apoptosis increased in the liver tumors of mice treated with the BSJPD (p < 0.05); drug serum with 20 % BSJPD inhibited cell viability (p < 0.05) and reduced the expression of PI3K, the Bcl-xL/BAD ratio, and the levels of p53 and p-Akt in HepG2 cells. Moreover, licochalcone A, alisol B, and hederagenin inhibited cell viability (p < 0.05), induced cell apoptosis (p < 0.01), reduced p-Akt levels, and increased cleaved-CASP3 (p < 0.05) and p53 expression levels in HepG2 cells. These data suggest that the BSJPD prolongs the survival of LC patients and induces apoptosis and that it may be associated with the regulation of PI3K, Akt, p53, CASP3, and Bcl-xL/BAD expression.

SELECTION OF CITATIONS
SEARCH DETAIL