Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626795

ABSTRACT

AIMS: Heavy metal pollution is a serious and difficult environmental problem. With increasing heavy metal content in industrial wastewater, an environmentally friendly and efficient treatment method must be identified. METHODS AND RESULTS: Considering the ability of endophytic bacteria to adsorb metal ions, this paper explored the heavy metal resistance, adsorption, and adsorption mechanisms and performance of S. succinus H3, an endophytic bacterium. S. succinus H3 exhibited metal resistance at 4 mM Cu2+ and 5 mM Mg2+. The adsorption rate of Cu2+ and Mg2+ ions by the live/dead strain was approximately 70%, and the adsorption capacity was positively correlated with the metal ion concentration. The kinetics and isothermal models were used to study the process of S. succinus H3 adsorption on Cu2+. It exhibits a good correlation with the Freundlich isothermal model. The N-H group, protein C=O group, polysaccharide C-O group, O-H group and some lipids are the main functional groups in the cell wall. S. succinus H3 may bond with the amine group to adsorb Mg2+ through complexation/coordination and may form a copper complex after adsorbing Cu2+. S. succinus H3 has a live adsorption rate of 15% in eight mixed metal ion systems at a 50 mg/L concentration. The study results can lay a foundation for expanding the bacterial resource pool of pollutant treatment and improving the efficiency for sewage treatment. The high heavy metal adsorption capacity of microorganisms has a decisive role in industrial wastewater treatment by microorganisms. Such microorganisms with high metal resistance and adsorption capacity to heavy metals can thrive in industrial wastewater, remove heavy metals efficiently, and greatly improve the efficiency of wastewater treatment. CONCLUSION: The study results can lay a theoretical foundation for the use of S. succinus H3 to biologically treat heavy metal wastewater in the future.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Wastewater , Magnesium , Water Pollutants, Chemical/analysis , Metals, Heavy/chemistry , Kinetics , Ions , Bacteria , Adsorption , Hydrogen-Ion Concentration
2.
World J Microbiol Biotechnol ; 39(6): 149, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37022503

ABSTRACT

Pathogen infestation results in significant losses of fruits and vegetables during handling, transportation, and storage. The use of synthetic fungicides has been a common measure for controlling plant pathogens. However, their excessive use of chemicals has led to increased environmental pollution, leaving large amounts of chemicals in agricultural products, posing a threat to human and animal health. There is now an increasing amount of research activities to explore safer and more innovative ways to control plant pathogens. In this regard, endophytic bacteria contribute significantly. Endophytic bacteria are ubiquitous in the internal tissues of plants without causing damage or disease to the host. Due to their high volatility and difficulties in residue in fruits and vegetables, volatile organic chemicals (VOCs) produced by endophytic bacteria have received a lot of attention in recent years. VOCs are a potential biofumigant for the effective control of postharvest fruits and vegetables diseases. This review focuses mainly on the recent progress in using endophytic bacteria VOCs to control post-harvest fruits and vegetables disease. This review provides a brief overview of the concept, characteristics, and summarises the types, application effect, and control mechanisms of endophytic bacterial VOCs. The research area that is being developed has great application value in agriculture and living practice.


Subject(s)
Vegetables , Volatile Organic Compounds , Animals , Humans , Fruit/microbiology , Plants , Bacteria , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
Arch Microbiol ; 204(10): 601, 2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36057891

ABSTRACT

The growth of Phytophthora capsica, Rhizoctonia solani, Fusarium graminearum, Fusarium oxysporum and Botrytis cinerea were all inhibited by the fermentation supernatant of Bacillus licheniformis TG116, a biocontrol strain isolated from Typhonium giganteum Engl. previously with broad-spectrum resistance to plant pathogens. The fermentation supernatant of the TG116 has a great stability on temperature and UV, and shows the biological activity of protease and cellulase. The antifungal protease produced by B. licheniformis TG116 was purified to homogeneity by ammonium sulfate precipitation, DEAE Sepharose Fast Flow column chromatography and Sephadex G-50 column chromatography. The inhibition of protease by the three surfactants increased with increasing concentration inhibition. Among these surfactants, EDTA showed the strongest inhibition, with only 25% protein activity at a concentration of 1.1 mmol·L-1. Gene amplification verified the presence of a gene fragment of serine protease in the strain TG116. The antimicrobial substance isolated from the fermentation broth of TG116 is a serine protease component.


Subject(s)
Bacillus licheniformis , Phytophthora , Antifungal Agents , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Serine Proteases/genetics , Surface-Active Agents/pharmacology
4.
Curr Microbiol ; 79(9): 268, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35881250

ABSTRACT

Electroactive microorganisms play a significant role in microbial fuel cells (MFCs). These devices are environmentally friendly and can turn large quantities of organic material into renewable energy based on microbial diversity. Based on broad microbial diversity, it is necessary to obtain a comprehensive understanding of their resource distribution and to discover potential resources. In this study, sweet potato tissues were selected to isolate endophytic bacteria, and the electrochemical activity potential of those bacteria was evaluated by high-throughput screening with a WO3 nanoprobe. This study was screened and obtained a strain SHE10 with electrochemical performance from the rhizome of sweet potato by a WO3 nanoprobe, which was identified as Shinella zoogloeoides. After nearly 600 h of voltage monitoring and cyclic voltammetry analysis, the results showed that the average voltage of S. zoogloeoides SHE10 reached 122.5 mV in stationary period. The maximum power density is 78.3 ± 1.8 mW/m2, and the corresponding current density is 223.0 mA/m2. The good redox reaction also indicated that the strain had good electrical activity. Its electron transfer mode was diverse, but its power generation mechanism still needs to be further discussed. The study of S. zoogloeoides SHE10 provides scientific theoretical reference for expanding the resource pool of electroproducing bacteria and the types of electroproducing microorganisms.


Subject(s)
Bioelectric Energy Sources , Rhizobiaceae , Bioelectric Energy Sources/microbiology , Electricity , Electrochemistry , Electrodes , Endophytes
5.
Front Microbiol ; 13: 987844, 2022.
Article in English | MEDLINE | ID: mdl-36090114

ABSTRACT

Volatile organic compounds (VOCs) produced by antagonistic microorganisms have good biocontrol prospects against postharvest diseases. Infection caused by Alternaria iridiaustralis and 10 other significant fungal diseases can be successfully inhibited by VOCs produced by an identified and screened endophytic strain L1 (Bacillus velezensis). This study revealed the in vivo and in vitro biocontrol effects of VOCs released by B. velezensis L1 on A. iridiaustralis, a pathogenic fungus responsible for rot of wolfberry fruit. The inhibition rates of VOCs of B. velezensis L1 on the mycelial growth of A. iridiaustralis in vitro were 92.86 and 90.30%, respectively, when the initial inoculum concentration on the plate was 1 × 109 colony forming unit (CFU)/ml. Spore germination and sporulation were 66.89 and 87.96%, respectively. VOCs considerably decreased the wolfberry's disease index and decay incidence in vivo. Scanning electron microscopy revealed that the morphological and structural characteristics of A. iridiaustralis could be altered by VOCs. Ten VOCs were identified through headspace-gas chromatography-ion mobility spectrometry. Pure chemical tests revealed that 2.3-butanedione had the strongest antifungal effects, totally inhibiting A. iridiaustralis in wolfberry fruit at a 60 µl/L concentration. The theory underpinning the potential application of VOCs from B. velezensis is provided herein. This is also the first study to document the antifungal capabilities of the B. velezensis strain on postharvest wolfberry fruit. GRAPHICAL ABSTRACT.

6.
Front Microbiol ; 13: 1068144, 2022.
Article in English | MEDLINE | ID: mdl-36704548

ABSTRACT

Fungal pathogen contamination is one of the most important factors affecting the postharvest quality and shelf life of wolfberry fruits. Therefore, the prevention and control of fungal pathogens that cause fruit rot has become particularly important. Volatile antifungal agents of biological origin have broad application prospects. They may be safer and more efficient than traditional physical and chemical methods. Four pathogenic fungi were isolated and purified from rotting wolfberry. These pathogenic fungi were determined to be Mucor circinelloides LB1, Fusarium arcuatisporum LB5, Alternaria iridiaustralis LB7, and Colletotrichum fioriniae LB8. In vitro fumigation experiments showed that 2,3-butanedione can effectively inhibit the mycelial growth, spore germination, and sporulation ability of pathogenic fungi. The scanning electron microscope (SEM) showed morphological changes in hyphae. Propidium iodide (PI) Staining and leakage of 260 and 280 nm-absorbing increased, suggesting damage to cell membranes. Furthermore, 2,3-butanedione was found to significantly improve fruit firmness, soluble solid, total phenol, flavonoid, and soluble sugar content, as well as higher SOD enzyme activity and lower PPO and POD enzyme activity in the treated fruit, indicating that 2,3-butanedione can effectively reduce the adverse effects of pathogenic fungi in wolfberry. Based on these results, we conclude that 2,3-butanedione is effective against infection by pathogenic fungi in post-harvest wolfberry. 2,3-butanedione should be considered a viable substitute for conventional fungicides that are currently used to control rot in wolfberry.

SELECTION OF CITATIONS
SEARCH DETAIL