Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Publication year range
1.
Langmuir ; 40(24): 12381-12393, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836557

ABSTRACT

A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several ß-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.


Subject(s)
Acyl Carrier Protein , Acyl Carrier Protein/chemistry , Hydrogen-Ion Concentration , Temperature , Gels/chemistry , Glycerol/chemistry , Water/chemistry
2.
J Pept Sci ; 30(2): e3541, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37699615

ABSTRACT

To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-19 pandemic continues to be a potentially lethal disease. Although both vaccines and specific antiviral drugs have been approved, the search for more specific therapeutic approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of several stages, and each one can be selectively blocked to disrupt viral infection. Peptides are a promising class of antiviral compounds, which may be suitably modified to be more stable, more effective, and more selective towards a specific viral replication step. The latter two goals might be obtained by increasing the specificity and/or the affinity of the interaction with a specific target and often imply the stabilization of the secondary structure of the active peptide. This review is focused on modified antiviral peptides against SARS-CoV-2 acting at different stages of virus replication, including ACE2-RBD interaction, membrane fusion mechanism, and the proteolytic cleavage by different viral proteases. Therefore, the landscape presented herein provides a useful springboard for the design of new and powerful antiviral therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Pandemics , Peptides/pharmacology
3.
J Pept Sci ; 30(3): e3547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37752675

ABSTRACT

Argireline (Ac-EEMQRR-NH2 ), a well-known neurotransmitter peptide with a potency similar to botulinum neurotoxins, reveals a proven affinity toward Cu(II) ions. We report herein Cu(II) chelating properties of three new Argireline derivatives, namely, AN4 (Ac-EAHRR-NH2 ), AN5 (Ac-EEHQRR-NH2 ), and AN6 (Ac-EAHQRK-NH2 ). Two complementary experimental techniques, i.e., potentiometric titration (PT) and isothermal titration calorimetry (ITC), have been employed to describe the acid-base properties of the investigated peptides as well as the thermodynamic parameters of the Cu(II) complex formation. Additionally, based on density functional theory (DFT) calculations, we propose the most likely structures of the resulting Cu-peptide complexes. Finally, the cytotoxicity of the free peptides and the corresponding Cu(II) complexes was estimated in human skin cells for their possible future cosmetic application. The biological results were subsequently compared with free Argireline, its Cu(II)-complexes, and the previously studied AN2 derivative (EAHQRR).


Subject(s)
Coordination Complexes , Copper , Humans , Copper/chemistry , Peptides/pharmacology , Peptides/chemistry , Oligopeptides/chemistry , Ions , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
4.
J Pept Sci ; : e3605, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660732

ABSTRACT

On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and ß-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.

5.
J Pept Sci ; 30(2): e3543, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37734745

ABSTRACT

The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges. Different systems, such as pure liquids, aqueous solutions, and systems formed by melittin protein and cosolvent/water solutions, have been used to validate the new models. The calculated macroscopic and structural properties are in agreement with experimental findings, supporting the validity of the newly proposed models.


Subject(s)
Alcohols , Melitten , Melitten/chemistry , Solvents/chemistry , Alcohols/chemistry , Peptides/chemistry , Proteins/chemistry , Water/chemistry , Trifluoroethanol/chemistry
6.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792059

ABSTRACT

Bicyclic peptides have attracted the interest of pharmaceutical companies because of their remarkable properties, putting them on a new path in medicine. Their conformational rigidity improves proteolytic stability and leads to rapid penetration into tissues via any possible route of administration. Moreover, elimination of renal metabolism is of great importance, for example, for people with a history of liver diseases. In addition, each ring can function independently, making bicyclic peptides extremely versatile molecules for further optimization. In this paper, we compared the potentiometric and spectroscopic properties studied by UV-vis, MCD, and EPR of four synthetic analogues of the bi-cyclic peptide c(PKKHP-c(CFWKTC)-PKKH) (BCL). In particular, we correlated the structural and spectral properties of complexes with coordinating abilities toward Cu(II) ions of MCL1 (Ac-PKKHPc(CFWKTC)PKKH-NH2) that contains the unbinding cycle and N- and C-terminal linear parts with two histidine residues, one per part; two monocyclic ligands containing one histidine residue, both in the N-terminal position, i.e., MCL2 (Ac-PKKHPc(CFWKTC)PKKS-NH2) and in the C-terminal position, i.e., MCL3 (Ac-PKKSPc(CFWKTC)PKKH-NH2), respectively; and the linear structure LNL (Ac-PKKHPSFWKTSPKKH-NH2). Potentiometric results have shown that the bicyclic structure promotes the involvement of the side chain imidazole donors in Cu(II) binding. On the other hand, the results obtained for the mono-cyclic analogues lead to the conclusion that the coordination of the histidine moiety as an anchoring group is promoted by its location in the peptide sequence further from the nonbinding cycle, strongly influencing the involvement of the amide donors in Cu(II) coordination.


Subject(s)
Copper , Peptides, Cyclic , Copper/chemistry , Peptides, Cyclic/chemistry , Coordination Complexes/chemistry , Ligands , Ions/chemistry , Potentiometry
7.
Chembiochem ; 24(12): e202200741, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36892535

ABSTRACT

Post-translational modifications affect protein biology under physiological and pathological conditions. Efficient methods for the preparation of peptides and proteins carrying defined, homogeneous modifications are fundamental tools for investigating these functions. In the case of mucin 1 (MUC1), an altered glycosylation pattern is observed in carcinogenesis. To better understand the role of MUC1 glycosylation in the interactions and adhesion of cancer cells, we prepared a panel of homogeneously O-glycosylated MUC1 peptides by using a quantitative chemoenzymatic approach. Cell-adhesion experiments with MCF-7 cancer cells on surfaces carrying up to six differently glycosylated MUC1 peptides demonstrated that different glycans have a significant impact on adhesion. This finding suggests a distinct role for MUC1 glycosylation patterns in cancer cell migration and/or invasion. To decipher the molecular mechanism for the observed adhesion, we investigated the conformation of the glycosylated MUC1 peptides by NMR spectroscopy. These experiments revealed only minor differences in peptide structure, therefore clearly relating the adhesion behaviour to the type and number of glycans linked to MUC1.


Subject(s)
Glycopeptides , Mucin-1 , Mucin-1/chemistry , Glycopeptides/chemistry , Glycosylation , Cell Adhesion , Peptides/chemistry , Proteins/metabolism , Polysaccharides
8.
Org Biomol Chem ; 21(8): 1674-1679, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36385318

ABSTRACT

Peptide fragments of glycoproteins containing multiple N-glycosylated sites are essential biochemical tools not only to investigate protein-protein interactions but also to develop glycopeptide-based diagnostics and immunotherapy. However, solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites is hampered by difficult couplings, which results in a substantial drop in yield. To increase the final yield, large amounts of reagents but also time-consuming steps are required. Therefore, we propose herein to utilize heating and stirring in combination with low-loading solid supports to set up an accelerated route to obtain, by an efficient High-Temperature Fast Stirring Peptide Synthesis (HTFS-PS), glycopeptides containing multiple N-glycosylated sites using equimolar excess of the precious glycosylated building blocks.


Subject(s)
Glycopeptides , Solid-Phase Synthesis Techniques , Glycosylation , Glycoproteins
9.
J Pept Sci ; 29(7): e3475, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36597597

ABSTRACT

Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed ß-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.


Subject(s)
Multiple Sclerosis , Humans , Autoantigens , Adhesins, Bacterial , Myelin Sheath/metabolism , Haemophilus influenzae , Autoantibodies , Myelin Proteins , Peptides , Myelin-Oligodendrocyte Glycoprotein
10.
J Enzyme Inhib Med Chem ; 38(1): 2193676, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37146256

ABSTRACT

The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.


Subject(s)
Agaricales , Cosmeceuticals , Thiosemicarbazones , Animals , Mice , Monophenol Monooxygenase , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Melanins
11.
J Enzyme Inhib Med Chem ; 38(1): 2254019, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735942

ABSTRACT

Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I ß-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.


Subject(s)
Alkynes , Oxytocin , Oxytocin/pharmacology , Azides , Catalysis , Disulfides
12.
Chembiochem ; 23(3): e202100515, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34761861

ABSTRACT

Tentacle-like polymers decorated with several copies of peptide antigens can be interesting tools for increasing the ability to capture circulating antibodies in patient sera, using cooperative effects for stronger avidity. We previously showed that antibodies from multiple sclerosis (MS) patient sera preferentially recognize hyperglucosylated adhesin protein HMW1ct of non-typeable Haemophilus influenzae (NTHi). We selected the C-terminal HMW1ct(1347-1354) minimal epitope and prepared the diglucosylated analogue Ac-KAN(Glc)VTLN(Glc)TTG-K(N3 )-NH2 to graft a 40 kDa dextran scaffold modified with glycidyl-propargyl moieties to perform a copper catalyzed alkyne-azide coupling reaction (CuAAC). Quantitative NMR measurements allowed the characterization of the peptide loading (19.5 %) on the multivalent dextran conjugate. This novel polymeric structure displayed optimal capturing properties of both IgG and, more interestingly, IgM antibodies in MS sera. Specific antibodies from a representative MS serum, were successfully depleted using a Sepharose resin bearing the new glucosylated multivalent conjugate, as confirmed by ELISA. These results may offer a promising proof-of-concept for the selective purification of high affinity autoantibodies from sera of autoimmune patients, in general, and of specific high affinity antibodies against a minimally glcosylated epitope Asn(Glc) from sera of multiple sclerosis (MS) patients, in particular.


Subject(s)
Adhesins, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Autoantibodies/pharmacology , Dextrans/pharmacology , Haemophilus influenzae/drug effects , Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Autoantibodies/chemistry , Dextrans/chemistry , Glycosylation , Humans , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemistry
13.
J Enzyme Inhib Med Chem ; 37(1): 592-596, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35057692

ABSTRACT

We report for the first time Antibody-Drug-Conjugates (ADCs) containing human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) directed Monoclonal Antibodies (MAbs) linked to low molecular weight inhibitors of the same enzymes by means of hydrophilic peptide spacers. In agreement with the incorporated CA directed MAb fragments, in vitro inhibition data of the obtained ADCs showed sub-nanomolar KI values for the tumour associated CAs IX and XII which were up to 10-fold more potent when compared to the corresponding unconjugated MAbs. In addition, the introduction of the CA inhibitor (CAI) benzenesulfonamide allowed the ADCs to potently inhibit the housekeeping tumoral off-target human CA II isoform. Such results are supporting the definition of an unprecedented reported class of ADCs able to hit simultaneously multiple hCAs physiologically cooperative in maintaining altered cellular metabolic pathways, and therefore ideal for the treatment of chronic diseases such as cancers and inflammation diseases.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Antibodies, Monoclonal/chemistry , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Molecular Weight , Neoplasms/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Benzenesulfonamides
14.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613489

ABSTRACT

Despite human recombinant H2 relaxin or serelaxin holding promise as a cardiovascular drug, its actual efficacy in chronic treatment of heart failure patients was hampered by the need to be administered by multiple daily IV injections for a long time, with obvious drawbacks in terms of patients' compliance. This in vitro study aimed at exploring the molecular background for a possible administration of the peptide hormone relaxin by the oral route. Serelaxin and purified porcine relaxin (pRLX) were subjected to simulated intestinal fluid (SIF) enzymatic digestion in vitro to mimic the behavior of gastroprotective formulations. The digestion time course was studied by HPLC, and the relative bio-potency of the intact molecules and their proteolytic fragments was assessed by second messenger (cAMP) response in RXFP1 relaxin receptor-bearing THP-1 human monocytic cells. Both intact proteins (100 ng/mL) induced a significant cAMP rise in THP-1 cells. Conversely, SIF-treated serelaxin showed a brisk (30 s) bioactivity decay, dropping down to the levels of the unstimulated controls at 120 s, whereas SIF-treated pRLX retained significant bioactivity for up to 120 s. After that, it progressively declined to the levels of the unstimulated controls. HPLC analysis indicates that this bioactivity could be ascribed to a minor component of the pRLX sample more resistant to proteolysis. When identified and better characterized, this peptide could be exploited for the development of synthetic relaxin agonists suitable for oral formulations.


Subject(s)
Cardiovascular Agents , Relaxin , Humans , Animals , Swine , Relaxin/pharmacology , Relaxin/metabolism , Signal Transduction , Vasodilator Agents , Digestion , Recombinant Proteins/pharmacology
15.
Chem Biodivers ; 18(2): e2000833, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348441

ABSTRACT

Cosmeceutical field, which merges cosmetics and pharmaceuticals, is nowadays a highly investigated research area, because a scientific demonstration of the claimed bioactivity of new cosmeceutical ingredients is increasingly requested. In fact, an aspect differentiating traditional cosmetics from cosmeceuticals is the identification and characterization of the active ingredients and demonstrating its efficacy in the claimed activity. An interesting group of bioactive cosmeceutical ingredients are peptides, which due to their particular properties, meets most of the requirements presented by the cosmeceutical industry when composing new formulas. In this context, beside bioactivity, two additional aspects have been recently considered, when dealing with peptides as cosmeceutical ingredients: bioavailability and stability. We describe herein novel methods applied in order to enhance peptides skin-penetration and stability, reviewing both scientific articles and patents, issued in the cosmeceutical arena.


Subject(s)
Cosmeceuticals/pharmacokinetics , Drug Delivery Systems , Peptides/pharmacokinetics , Animals , Biological Availability , Cosmeceuticals/administration & dosage , Cosmeceuticals/pharmacology , Cosmetics/pharmacokinetics , Cosmetics/pharmacology , Drug Delivery Systems/methods , Humans , Peptides/administration & dosage , Peptides/pharmacology , Skin/drug effects , Skin/metabolism , Skin/ultrastructure , Skin Absorption/drug effects
16.
J Pept Sci ; 26(11): e3281, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32790009

ABSTRACT

Peptides mimicking antigenic epitopes targeted by antibodies can be powerful tools to be used as antigen surrogates for the specific diagnosis and treatment of autoimmune diseases. Obtaining structural insights about the nature of peptide-antibody interaction in complex mixtures such as sera is a critical goal. In multiple sclerosis (MS), we previously demonstrated that the N-linked ß-d-glucopyranosyl moieties (N-Glc) containing epitopes in nontypeable Haemophilus influenzae adhesin C-terminal portion HMW1(1205-1526) were essential for high-affinity antibody binding in a subpopulation of MS patients. With the aim of developing peptide probes and assessing their binding properties to antibodies from sera of representative patients, we performed the systematic analysis of synthetic peptides based on HMW1(1347-1354) fragment bearing one or two N-Glc respectively on Asn-1349 and/or Asn-1352. The N-glucosylated nonapeptides efficiently bind to IgG antibodies, displaying IC50 in the range 10-8 -10-10 M by competitive indirect enzyme-linked immunosorbent assay (ELISA) in three representative MS patient sera. We selected the di-N-glucosylated adhesin peptide Ac-KAN (Glc)VTLN (Glc)TT-NH2 as the shortest sequence able to inhibit high-avidity interaction with N-Glc targeting IgM antibodies. Nuclear magnetic resonance (NMR)- and circular dichroism (CD)-based characterization showed that the binding properties of these antigens could not be ascribed to structural differences induced by the presence of up to two N-glucosyl moieties. Therefore, the antibody binding is not easily correlated to the position of the sugar or to a determined conformation in water.


Subject(s)
Adhesins, Bacterial/immunology , Antigens/immunology , Multiple Sclerosis/immunology , Peptides/immunology , Adhesins, Bacterial/chemistry , Glycosylation , Haemophilus influenzae/chemistry , Humans , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry
17.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233719

ABSTRACT

Somatostatin analogues are useful pharmaceuticals in peptide receptor radionuclide therapy. In previous studies, we analyzed a new bicyclic somatostatin analogue (BCS) in connection with Cu(II) ions. Two characteristic sites were present in the peptide chain: the receptor- and the metal-binding site. We have already shown that this ligand can form very stable imidazole complexes with the metal ion. In this work, our aim was to characterize the intramolecular interaction that occurs in the peptide molecule. Therefore, we analyzed the coordination abilities of two cyclic ligands, i.e., P1 only with the metal binding site and P2 with both sites, but without the disulfide bond. Furthermore, we used magnetic circular dichroism (MCD) spectroscopy to better understand the coordination process. We applied this method to analyze spectra of P1, P2, and BCS, which we have described previously. Additionally, we analyzed the MCD spectra of P3 ligand, which has only the receptor binding site in its structure. We have unequivocally shown that the presence of the Phe-Trp-Lys-Thr motif and the disulfide bond significantly increases the metal binding efficiency.


Subject(s)
Coordination Complexes/chemistry , Copper , Somatostatin/analogs & derivatives , Amino Acid Sequence , Binding Sites , Coordination Complexes/chemical synthesis , Copper/chemistry , Copper/metabolism , Ligands , Protein Binding
18.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105700

ABSTRACT

Members of neuropeptide B/W signaling system have been predominantly detected and mapped within the CNS. In the rat, this system includes neuropeptide B (NPB), neuropeptide W (NPW) and their specific receptor NPBWR1. This signaling system has a wide spectrum of functions including a role in modulation of inflammatory pain and neuroendocrine functions. Expression of NPB, NPW and NPBWR1 in separate heart compartments, dorsal root ganglia (DRG) and stellate ganglia was proven by RT-qPCR, Western blot (WB) and immunofluorescence. Presence of mRNA for all tested genes was detected within all heart compartments and ganglia. The presence of proteins preproNPB, preproNPW and NPBWR1 was confirmed in all the chambers of heart by WB. Expression of preproNPW and preproNPB was proven in cardiac ganglionic cells obtained by laser capture microdissection. In immunofluorescence analysis, NPB immunoreactivity was detected in nerve fibers, some nerve cell bodies and smooth muscle within heart and both ganglia. NPW immunoreactivity was present in the nerve cell bodies and nerve fibers of heart ganglia. Weak nonhomogenous staining of cardiomyocytes was present within heart ventricles. NPBWR1 immunoreactivity was detected on cardiomyocytes and some nerve fibers. We confirmed the presence of NPB/W signaling system in heart, DRG and stellate ganglia by proteomic and genomic analyses.


Subject(s)
Myocardium/metabolism , Neuropeptides/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Fluorescent Antibody Technique , Ganglia, Spinal/metabolism , Gene Expression , Male , Neuropeptides/immunology , Neuropeptides/metabolism , Rats, Zucker , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/immunology , Reproducibility of Results , Signal Transduction , Stellate Ganglion/metabolism
19.
Molecules ; 25(3)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050527

ABSTRACT

We report herein a novel ChemMatrix® Rink resin functionalised with two phenylboronate (PhB) moieties linked on the N-α and N-ε amino functions of a lysine residue to specifically capture deoxyfructosylated peptides, compared to differently glycosylated peptides in complex mixtures. The new PhB-Lys(PhB)-ChemMatrix® Rink resin allows for exploitation of the previously demonstrated ability of cis diols to form phenylboronic esters. The optimised capturing and cleavage procedure from the novel functionalised resin showed that only the peptides containing deoxyfructosyl-lysine moieties can be efficiently and specifically detected by HR-MS and MS/MS experiments. We also investigated the high-selective affinity to deoxyfructosylated peptides in an ad hoc mixture containing unique synthetic non-modified peptides and in the hydrolysates of human and bovine serum albumin as complex peptide mixtures. We demonstrated that the deoxyfructopyranosyl moiety on lysine residues is crucial in the capturing reaction. Therefore, the novel specifically-designed PhB-Lys(PhB)-ChemMatrix® Rink resin, which has the highest affinity to deoxyfructosylated peptides, is a candidate to quantitatively separate early glycation peptides from complex mixtures to investigate their role in diabetes complications in the clinics.


Subject(s)
Boronic Acids/chemistry , Chromatography, Affinity/methods , Fructose/chemistry , Peptides/analysis , Peptides/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Glycosylation , Lysine/chemistry , Peptides/chemistry , Prohibitins , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/metabolism , Serum Albumin, Human/analysis , Serum Albumin, Human/metabolism , Tandem Mass Spectrometry
20.
Arch Biochem Biophys ; 663: 44-53, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30594643

ABSTRACT

Investigation of the role of saccharides and glycoconjugates in mechanisms of immune-mediated physiological and pathological conditions is a hot topic. In fact, in many autoimmune diseases cross-reactivity between sugar moieties exposed on exogenous pathogens and self-molecules has long been hinted. Several peptides have been reported as mimetics of glycans specifically interacting with sugar-binding antibodies. The seek for these glycoreplica peptides is instrumental in characterizing antigen mimicry pathways and their involvement in triggering autoimmunity. Therefore, peptides mimicking glycan-protein interactions are valuable molecular tools to overcome the difficulties of oligosaccharide preparations. The clinical impact of peptide-based probes for autoimmune diseases diagnosis and follow-up is emerging only recently as just the tip of the iceberg of an overlooked potential. Here we provide a brief overview of the relevance of the structural and functional aspects of peptide probes and their mimicry effect in autoimmunity mechanisms for promising applications in diagnostics and therapeutics.


Subject(s)
Peptides/chemistry , Polysaccharides/chemistry , Amino Acid Sequence , Animals , Antigen-Antibody Reactions , Autoimmunity , Humans , Molecular Mimicry , Peptide Library , Polysaccharides/immunology
SELECTION OF CITATIONS
SEARCH DETAIL