Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Chem Biol ; 11(10): 793-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26344696

ABSTRACT

The tremendous therapeutic potential of peptides has not yet been realized, mainly owing to their short in vivo half-life. Although conjugation to macromolecules has been a mainstay approach for enhancing protein half-life, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small molecule that binds reversibly to the serum protein transthyretin. Although there are a few molecules that bind albumin reversibly, we are unaware of designed small molecules that reversibly bind other serum proteins and are used for half-life extension in vivo. We show here that our strategy was effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy.


Subject(s)
Benzoates/chemistry , Biomimetics/methods , Peptide Fragments/chemistry , Prealbumin/chemistry , Pyrazoles/chemistry , Receptors, LHRH/agonists , Amino Acid Sequence , Animals , Benzoates/blood , Benzoates/metabolism , Benzoates/pharmacology , Binding Sites , Cell Survival/drug effects , Half-Life , HeLa Cells , Humans , Ligands , Male , Microsomes, Liver/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Sequence Data , Peptide Fragments/blood , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Prealbumin/metabolism , Prealbumin/pharmacology , Protein Binding , Protein Stability , Pyrazoles/blood , Pyrazoles/metabolism , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Rats, Wistar
2.
Protein Expr Purif ; 122: 72-81, 2016 06.
Article in English | MEDLINE | ID: mdl-26923060

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production. Here we explored whether we could generate abundant amounts of human AHR and ARNT in a better overexpression system for functional study. We observed that human AHR and ARNT can be expressed in Pichia pastoris with yields that are comparable to the baculovirus system only if their cDNAs are optimized for Pichia expression. Fusion with a c-myc tag at their C-termini seems to increase the expression yield. These Pichia expressed proteins can effectively heterodimerize and form the ternary AHR/ARNT/enhancer complex in the presence of ß-naphthoflavone or kynurenine. Limited proteolysis using thermolysin can be used to study the heterodimerization of these human AHR and ARNT proteins.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Pichia/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry , Basic Helix-Loop-Helix Transcription Factors/chemistry , Codon , DNA, Complementary/genetics , Gene Expression , Humans , Protein Binding , Protein Interaction Maps , Protein Multimerization , Proteolysis , Receptors, Aryl Hydrocarbon/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermolysin/metabolism , Up-Regulation
3.
Proc Natl Acad Sci U S A ; 110(24): 9992-7, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716704

ABSTRACT

The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Ig light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important. The Val122Ile (V122I) mutation, which alters the kinetic stability of TTR and affects 3% to 4% of African American subjects, can lead to development of familial amyloid cardiomyopathy. In addition, aggregation of WT TTR in individuals older than age 65 y causes senile systemic amyloidosis. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. Here, we report the development of AG10, a potent and selective kinetic stabilizer of TTR. AG10 prevents dissociation of V122I-TTR in serum samples obtained from patients with familial amyloid cardiomyopathy. In contrast to other TTR stabilizers currently in clinical trials, AG10 stabilizes V122I- and WT-TTR equally well and also exceeds their efficacy to stabilize WT and mutant TTR in whole serum. Crystallographic studies of AG10 bound to V122I-TTR give valuable insights into how AG10 achieves such effective kinetic stabilization of TTR, which will also aid in designing better TTR stabilizers. The oral bioavailability of AG10, combined with additional desirable drug-like features, makes it a very promising candidate to treat TTR amyloid cardiomyopathy.


Subject(s)
Amyloid/antagonists & inhibitors , Amyloidosis/prevention & control , Benzoates/therapeutic use , Cardiomyopathies/prevention & control , Prealbumin/metabolism , Pyrazoles/therapeutic use , Amyloid/genetics , Amyloid/metabolism , Amyloidosis/genetics , Amyloidosis/metabolism , Animals , Area Under Curve , Benzoates/chemistry , Benzoates/pharmacokinetics , Benzoxazoles/metabolism , Benzoxazoles/pharmacokinetics , Benzoxazoles/pharmacology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , HeLa Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred ICR , Models, Molecular , Molecular Structure , Mutation , Prealbumin/chemistry , Prealbumin/genetics , Protein Binding , Protein Stability/drug effects , Protein Structure, Tertiary , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats , Rats, Wistar
4.
Nat Commun ; 13(1): 3590, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739116

ABSTRACT

Several investigations into the sites of action of opioid analgesics have utilized peripherally acting mu-opioid receptor antagonists (PAMORAs), which have been incorrectly assumed to possess limited permeability across the blood-brain barrier. Unfortunately, the poor pharmacokinetic properties of current PAMORAs have resulted in misunderstandings of the role of central nervous system and gastrointestinal tract in precipitating side effects such as opioid-induced constipation. Here, we develop a drug delivery approach for restricting the passage of small molecules across the blood-brain barrier. This allows us to develop naloxone- and oxycodone-based conjugates that display superior potency, peripheral selectivity, pharmacokinetics, and efficacy in rats compared to other clinically used PAMORAs. These probes allow us to demonstrate that the mu-opioid receptors in the central nervous system have a fundamental role in precipitating opioid-induced constipation. Therefore, our conjugates have immediate use as pharmacological probes and potential therapeutic agents for treating constipation and other opioid-related side effects.


Subject(s)
Analgesics, Opioid , Drug Delivery Systems , Narcotic Antagonists , Opioid-Induced Constipation , Analgesics, Opioid/adverse effects , Animals , Narcotic Antagonists/therapeutic use , Opioid-Induced Constipation/drug therapy , Prealbumin , Rats , Receptors, Opioid, mu
5.
J Med Chem ; 64(19): 14876-14886, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34542267

ABSTRACT

Protein drugs hold great promise as therapeutics for a wide range of diseases. Unfortunately, one of the greatest challenges to be addressed during clinical development of protein therapeutics is their short circulation half-life. Several protein conjugation strategies have been developed for half-life extension. However, these strategies have limitations and there remains room for improvement. Here, we report a novel nature-inspired strategy for enhancing the in vivo half-life of proteins. Our strategy involves conjugating proteins to a hydrophilic small molecule that binds reversibly to the plasma protein, transthyretin. We show here that our strategy is effective in enhancing the pharmacokinetic and pharmacodynamic properties of human interleukin 2 in rats, potentially opening the door for more effective and safer cancer immunotherapies. To our knowledge, this is the first example of successful use of a small-molecule that not only extends the half-life but also maintains the smaller size, binding potency, and hydrophilicity of proteins.


Subject(s)
Interleukin-2/pharmacokinetics , Prealbumin/metabolism , Small Molecule Libraries/metabolism , Amino Acid Sequence , Animals , Cell Line , Half-Life , Humans , Interleukin-2/chemistry , Interleukin-2/metabolism , Ligands , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
6.
Biochem Pharmacol ; 88(2): 253-65, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24486526

ABSTRACT

The aryl hydrocarbon receptor (AhR) heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (Arnt) for transcriptional regulation. We generated three N-terminal deletion constructs of the human AhR of 12-24 kDa in size--namely D1, D2, and D3--to suppress the Arnt function. We observed that all three deletions interact with the human Arnt with similar affinities. D2, which contains part of the AhR PAS-A domain and interacts with the PAS-A domain of Arnt, inhibits the formation of the AhR gel shift complex. D2 suppresses the 3-methylcholanthrene-induced, dioxin response element (DRE)-driven luciferase activity in Hep3B cells and exogenous Arnt reverses this D2 suppression. D2 suppresses the induction of CYP1A1 at both the message and protein levels in Hep3B cells; however, the CYP1B1 induction is not affected. D2 suppresses the recruitment of Arnt to the cyp1a1 promoter but not to the cyp1b1 promoter, partly because the AhR/Arnt heterodimer binds better to the cyp1b1 DRE than to the cyp1a1 DRE. Interestingly, D2 has no effect on the cobalt chloride-induced, hypoxia inducible factor-1 (HIF-1)-dependent expression of vegf, aldolase c, and ldh-a messages. Our data reveal that the flanking sequences of the DRE contribute to the binding affinity of the AhR/Arnt heterodimer to its endogenous enhancers and the function of AhR and HIF-1 can be differentially suppressed by the D2 inhibitory molecule.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/antagonists & inhibitors , Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Serine-Threonine Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL