Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nano Lett ; 21(1): 189-196, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33274946

ABSTRACT

We first observed the spin-to-charge conversion due to both the inverse Rashba-Edelstein effect (IREE) and inverse spin-Hall effect in a holey multilayer molybdenum disulfide (MoS2) intermediate layer in a Pt/YIG structure via LSSE measurements under nonequilibrium magnetization. We found an enhancement of approximately 238%, 307%, and 290% in the longitudinal spin Seebeck effect (LSSE) voltage, spin-to-charge current, and thermoelectric (TE) power factor, respectively, compared with the monolayer MoS2 interlayer in a Pt/YIG structure. Such an enhancement in the LSSE performance of Pt/holey MoS2/YIG can be explained by the improvement of spin accumulation in the Pt layer by induced spin fluctuation as well as increased additional spin-to-charge conversion due to in-plane IREE. Our findings represent a significant achievement in the understanding of spin transport in atomically thin MoS2 interlayers and pave the way toward large-area TE energy-harvesting devices in two-dimensional transition metal dichalcogenide materials.

2.
Nanotechnology ; 28(10): 105401, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28145279

ABSTRACT

The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al2O3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO2/Si substrates in the temperature range of 50-300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26-0.63 W m-1 K-1 of the AO/ZnO superlattice films (with an AO layer of ∼0.82 nm thickness) is approximately ∼150%-370% less than the in-plane thermal conductivity (0.96-1.19 W m-1 K-1) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

3.
J Nanosci Nanotechnol ; 14(6): 4394-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24738402

ABSTRACT

We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.


Subject(s)
Electric Power Supplies , Electrodes , Nanostructures/chemistry , Polystyrenes/chemistry , Semiconductors , Solar Energy , Thiophenes/chemistry , Electric Conductivity , Electron Transport , Equipment Design , Equipment Failure Analysis , Materials Testing , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Particle Size
4.
Nanotechnology ; 24(49): 495202, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24231523

ABSTRACT

We report on a systematic study of the thermal transport characteristics of both as-grown zinc oxide and gallium nitride nanowires (NWs) via the four-point-probe 3-ω method in the temperature range 130-300 K. Both as-grown NWs were synthesized by a vapor-liquid-solid growth mechanism, and show clear n-type semiconducting behavior without any defects, which enables both the NWs to be promising candidates for thermoelectric materials. To measure the thermal conductivities of both NWs with lower heat loss and measurement errors, the suspended structures were formed by a combination of an e-beam lithography process and a random dispersion method. The measured thermal conductivities of both NWs are greatly reduced compared to their bulk materials due to the enhanced phonon scattering via the size effect and dopants (impurities). Furthermore, we observed that the Umklapp peaks of both NWs are shifted to a higher temperature than those of their bulk counterparts, indicating that phonon-boundary scattering dominates over other phonon scattering due to the size effect.


Subject(s)
Nanowires/chemistry , Semiconductors , Electrodes , Equipment Design , Gallium/chemistry , Nanotechnology , Phonons , Temperature , Zinc Oxide/chemistry
5.
ACS Nano ; 16(2): 3404-3416, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35133142

ABSTRACT

The Seebeck effect refers to the production of an electric voltage when different temperatures are applied on a conductor, and the corresponding voltage-production efficiency is represented by the Seebeck coefficient. We report a Seebeck effect: thermal generation of driving voltage from the heat flowing in a thin PtSe2/PtSe2 van der Waals homostructure at the interface. We refer to the effect as the interface-induced Seebeck effect. By exploiting this effect by directly attaching multilayered PtSe2 over high-resistance PtSe2 thin films as a hybridized single structure, we obtained the highly challenging in-plane Seebeck coefficient of the PtSe2 films that exhibit extremely high resistances. This direct attachment further enhanced the in-plane thermal Seebeck coefficients of the PtSe2/PtSe2 van der Waals homostructure on sapphire substrates. Consequently, we successfully enhanced the in-plane Seebeck coefficients for the PtSe2 (10 nm)/PtSe2 (2 nm) homostructure approximately 42% compared to that of a pure PtSe2 (10 nm) layer at 300 K. These findings represent a significant achievement in understanding the interface-induced Seebeck effect and provide an effective strategy for promising large-area thermoelectric energy harvesting devices using two-dimensional transition metal dichalcogenide materials, which are ideal thermoelectric platforms with high figures of merit.

6.
Adv Sci (Weinh) ; 9(36): e2203455, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36354191

ABSTRACT

When a thermoelectric (TE) material is deposited with a secondary TE material, the total Seebeck coefficient of the stacked layer is generally represented by a parallel conductor model. Accordingly, when TE material layers of the same thickness are stacked vertically, the total Seebeck coefficient in the transverse direction may change in a single layer. Here, an abnormal Seebeck effect in a stacked two-dimensional (2D) PtSe2 /PtSe2 homostructure film, i.e., an extra in-plane Seebeck voltage is produced by wet-transfer stacking at the interface between the PtSe2 layers under a transverse temperature gradient is reported. This abnormal Seebeck effect is referred to as the interfacial Seebeck effect in stacked PtSe2 /PtSe2 homostructures. This effect is attributed to the carrier-interface interaction, and has independent characteristics in relation to carrier concentration. It is confirmed that the in-plane Seebeck coefficient increases as the number of stacked PtSe2 layers increase and observed a high Seebeck coefficient exceeding ≈188 µV K-1 at 300 K in a four-layer-stacked PtSe2 /PtSe2 homostructure.

7.
ACS Appl Mater Interfaces ; 14(46): 51881-51888, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36355622

ABSTRACT

It is very challenging to estimate thermoelectric (TE) properties when applying millimeter-scale two-dimensional (2D) transition metal dichalcogenide (TMDC) materials to TE device applications, particularly their Seebeck coefficient due to their high intrinsic electrical resistance. This paper proposes an innovative approach to measure large transverse (i.e., in-plane) Seebeck coefficients for 2D TMDC materials by placing a low resistance (LR) semimetallic PtSe2 film on high-resistance (HR) semiconducting MoS2 (>10 MΩ), whose internal resistance is too high to measure the Seebeck coefficient, forming a heterojunction structure using wet-transfer stacking. The vertically stacked LR-PtSe2 (3 nm)/HR-MoS2 (12 nm) heterostructure film exhibits a high Seebeck coefficient > 190 µV/K up to 5 K temperature difference. This unusual behavior can be explained by an additional Seebeck effect induced at the interface between the LR-2D/HR-2D heterostructure. The proposed stacked LR-PtSe2/HR-MoS2 heterostructure film offers promising phenomena 2D/2D materials that enable innovative TE device applications.

8.
ACS Appl Mater Interfaces ; 13(13): 15783-15790, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33769783

ABSTRACT

The spin Seebeck effect (SSE) has attracted renewed interest as a promising phenomenon for energy harvesting systems. A noteworthy effort has been devoted to improving the SSE voltage by inserting ultrathin magnetic layers including Fe70Cu30 interlayers in Pt/Y3Fe5O12 (Pt/YIG) systems with increased spin-mixing conductance at the interfaces. Nevertheless, the responsible underlying physics associated with the role of the interlayer in Pt/YIG systems in the SSE is still unknown. In this paper, we demonstrate that with a monolayer tungsten diselenide (ML WSe2) interlayer in the Pt/YIG bilayer system, the longitudinal SSE (LSSE) voltage is significantly increased by the increased spin accumulation in the Pt layer; the spin fluctuation in ML WSe2 amplifies the spin current transmission because the in-plane-aligned WSe2 spins are coupled to thermally pumped spins under nonequilibrium magnetization conditions in the LSSE configuration at room temperature. The thermopower (VLSSE/ΔT) improves by 323% with respect to the value of the reference Pt/YIG bilayer sample in the LSSE at room temperature. In addition, the induced ferromagnetic properties of the ML WSe2 flakes on YIG increase the LSSE voltage (VLSSE) of the sample; the ferromagnetic properties are a result of the improved magnetic moment density in the ML WSe2 flakes and their two-dimensional (2D) ML nature in the LSSE under nonequilibrium magnetization conditions. The results can extend the application range of the materials in energy harvesting and provide important information on the physics of the LSSE with a transition metal dichalcogenide intermediate layer in spin transport.

9.
J Phys Chem Lett ; 12(34): 8212-8219, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34415767

ABSTRACT

High efficiency thermoelectric (TE) materials still require high thermopower for energy harvesting applications. A simple elemental metallic semiconductor, tellurium (Te), has been considered critical to realize highly efficient TE conversion due to having a large effective band valley degeneracy. This paper demonstrates a novel approach to directly probe the out-of-plane Seebeck coefficient for one-dimensional Te quantum wires (QWs) formed locally in the aluminum oxide layer by well-controlled electrical breakdown at 300 K. Surprisingly, the out-of-plane Seebeck coefficient for these Te QWs ≈ 0.8 mV/K at 300 K. This thermopower enhancement for Te QWs is due to Te intrinsic nested band structure and enhanced energy filtering at Te/AO interfaces. Theoretical calculations support the enhanced high Seebeck coefficient for elemental Te QWs in the oxide layer. The local-probed observation and detecting methodology used here offers a novel route to designing enhanced thermoelectric materials and devices in the future.

10.
ACS Appl Mater Interfaces ; 13(37): 45097-45104, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34496563

ABSTRACT

A recent study found that magnetization curves for Y3Fe5O12 (YIG) slab and thick films (>20 µm thick) differed from bulk system curves by their longitudinal spin Seebeck effect in a Pt/YIG bilayer system. The deviation was due to intrinsic YIG surface magnetic anisotropy, which is difficult to adopt extrinsic surface magnetic anisotropy even when in contact with other materials on the YIG surface. This study experimentally demonstrates evidence for extrinsic YIG surface magnetic anisotropy when in contact with a diamagnetic graphene interlayer by observing the spin Seebeck effect, directly proving intrinsic YIG surface magnetic anisotropy interruption. We show the Pt/YIG bilayer system graphene interlayer role using large area single and multilayered graphenes using the longitudinal spin Seebeck effect at room temperature, and address the presence of surface magnetic anisotropy due to magnetic proximity between graphene and YIG layer. These findings suggest a promising route to understand new physics of spin Seebeck effect in spin transport.

11.
J Phys Chem Lett ; 11(13): 5338-5344, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32558573

ABSTRACT

The voltage induced by the inverse spin Hall effect (ISHE) is affected by several factors, including the spin Hall angle of the normal metal (NM), the quality and magnetic properties of the ferromagnetic material (FM), and the interface conditions between the NM and FM bilayers in longitudinal spin Seebeck effect (LSSE) measurement. Specifically, the interface conditions in NM/FM systems via LSSE devices play a crucial role in determining the efficiency of spin current injection into the NM layer. In this letter, we report a new approach to controlling the efficiency of spin current injection into a Pt layer across a Pt/Y3Fe5O12 (YIG) interface by surface coverage of the intermediate layer. A continuous, large-area multilayer molybdenum dichalcogenide (MoS2) thin film grown by chemical vapor deposition is inserted between the Pt and YIG layers in the LSSE configuration. We found that, when the large-area multilayer MoS2 film was present, the measured ISHE-induced voltage and theoretically calculated spin current in the Pt/MoS2/YIG trilayer increased by ∼510% and 470%, respectively, compared to those of a Pt/YIG bilayer. The induced voltage and spin current were very sensitive to the surface conductance, which was affected by the surface coverage of the multilayer MoS2 films in the LSSE measurement. Furthermore, the theoretically calculated spin current and spin mixing conductance in the trilayer geometry are in qualitatively good agreement with the experimental observations. These measurements enable us to explain the effect of the interface conditions on the spin Seebeck effect in spin transport.

12.
ACS Appl Mater Interfaces ; 12(2): 2490-2496, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31840505

ABSTRACT

Steam generation by eco-friendly solar energy has immense potential in terms of low-cost power generation, desalination, sanitization, and wastewater treatment. Herein, highly efficient steam generation in a bilayer solar steam generator (BSSG) is demonstrated, which is comprised of a large-area SnSe-SnSe2 layer deposited on a glassy carbon foam (CF). Both CF and SnSe-SnSe2 possess high photothermal conversion capabilities and low thermal conductivities. The combined bilayer system cumulatively converts input solar light into heat through phonon-assisted transitions in the indirect band gap SnSe-SnSe2 layer, together with trapping of sunlight via multiple scattering due to the porous morphology of the CF. This synergistic effect leads to efficient broadband solar absorption. Moreover, the low out-of-plane thermal conductivities of SnSe-SnSe2 and CF confine the generated heat at the evaporation surface, resulting in a significant reduction of heat losses. Additionally, the hydrophilic nature of the acid-treated CF offers effective water transport via capillary action, required for efficient solar steam generation in a floating form. A high evaporation rate (1.28 kg m-2 h-1) and efficiency (84.1%) are acquired under 1 sun irradiation. The BSSG system shows high recyclability, stability, and durability under repeated steam-generation cycles, which renders its practical device applications possible.

13.
ACS Appl Mater Interfaces ; 11(41): 38247-38254, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31542917

ABSTRACT

Recently, low-dimensional superlattice films have attracted significant attention because of their low dimensionality and anisotropic thermoelectric (TE) properties such as the Seebeck coefficient, electrical conductivity, and thermal conductivity. For these superlattice structures, both electrons and phonons show highly anisotropic behavior and exhibit much stronger interface scattering in the out-of-plane direction of the films compared to the in-plane direction. However, no detailed information is available in the literature for the out-of-plane TE properties of the superlattice-based films. In this report, we present the out-of-plane Seebeck coefficient, thermal conductivity, and electrical properties of p-type Bi2Te3/Bi0.5Sb1.5Te3 (bismuth telluride/bismuth antimony telluride, BT/BST) superlattice films in the temperature range of 77-500 K. Because of the synergistic combination of the energy filtering effect and low interfacial resistance of the superlattice structure, an impressively high ZT of 1.44 was achieved at 400 K for the 200 nm-thick p-type BT/BST superlattice film, corresponding to a 43% ZT enhancement compared to the pristine p-BST films with the same thickness.

14.
ACS Appl Mater Interfaces ; 11(26): 23303-23312, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31184861

ABSTRACT

We investigate the intrinsic thermoelectric (TE) properties of the metal-diffused aluminum oxide (AO) layer in metal/AO/metal structures, where the metallic conducting filaments (CFs) were locally formed in the structures via an electrical breakdown (EBD) process as shown by resistive switching memory devices, by directly measuring cross-plane Seebeck coefficients on the CF-containing insulating AO layers. The results showed that the Seebeck coefficients of the CF-containing AO layer in metal/AO/metal structures were influenced by the generation of the metallic CFs, which is due to the diffusion of the metal into the insulating AO layers when exposed to a temperature gradient in the direction of the cross plane of the sample. In addition, the increase in the Seebeck coefficients of the CF-containing AO layer when the number of EBD-processed patterns was increased is satisfactorily explained by the low-energy carrier (i.e., minority carriers) filtering through the metal-oxide interfacial barriers in the metal/AO/metal structures.

15.
ACS Appl Mater Interfaces ; 10(51): 44472-44482, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30507128

ABSTRACT

There is a recent interest in semiconducting superlattice films because their low dimensionality can increase the thermal power and phonon scattering at the interface in superlattice films. However, experimental studies in all cross-plane thermoelectric (TE) properties, including thermal conductivity, Seebeck coefficient, and electrical conductivity, have not been performed from these semiconducting superlattice films because of substantial difficulties in the direct measurement of the Seebeck coefficient and electrical conductivity. Unlike the conventional measurement method, we present a technique using a structure of sandwiched superlattice films between two embedded heaters as the heating source, and electrodes with two Cu plates, which directly enables the investigation of the Seebeck coefficient and electrical conductivity across the Al2O3/ZnO superlattice films, prepared by the atomic layer deposition method. Used in combination with the promising cross-plane four-point probe 3-ω method, our measurements and analysis demonstrate all cross-plane TE properties of Al2O3/ZnO superlattice films in the temperature range of 80 to 500 K. Our experimental methodology and the obtained results represent a significant advancement in the understanding of phonons and electrical transports in nanostructured materials, especially in semiconducting superlattice films in various temperature ranges.

16.
Nanoscale Res Lett ; 12(1): 373, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28549378

ABSTRACT

We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.

17.
Nanoscale ; 9(21): 7027-7036, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28368061

ABSTRACT

Recently, significant progress has been made in increasing the figure-of-merit (ZT) of various nanostructured materials, including thin-film and quantum dot superlattice structures. Studies have focused on the size reduction and control of the surface or interface of nanostructured materials since these approaches enhance the thermopower and phonon scattering in quantum and superlattice structures. Currently, bismuth-tellurium-based semiconductor materials are widely employed for thermoelectric (TE) devices such as TE energy generators and coolers, in addition to other sensors, for use at temperatures under 400 K. However, new and promising TE materials with enhanced TE performance, including doped zinc oxide (ZnO) multilayer or superlattice thin films, are also required for designing solid-state TE power generating devices with the maximum output power density and for investigating the physics of in-plane TE generators. Herein, we report the growth of Al2O3/ZnO (AO/ZnO) superlattice thin films, which were prepared by atomic layer deposition (ALD), and the evaluation of their electrical and TE properties. All the in-plane TE properties, including the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), of the AO/ZnO superlattice (with a 0.82 nm-thick AO layer) and AO/ZnO films (with a 0.13 nm-thick AO layer) were evaluated in the temperature range 40-300 K, and the measured S, σ, and κ were -62.4 and -17.5 µV K-1, 113 and 847 (Ω cm)-1, and 0.96 and 1.04 W m-1 K-1, respectively, at 300 K. Consequently, the in-plane TE ZT factor of AO/ZnO superlattice films was found to be ∼0.014, which is approximately two times more than that of AO/ZnO films (ZT of ∼0.007) at 300 K. Furthermore, the electrical power generation efficiency of the TE energy generator consisting of four couples of n-AO/ZnO superlattice films and p-Bi0.5Sb1.5Te3 (p-BST) thin-film legs on the substrate was demonstrated. Surprisingly, the output power of the 100 nm-thick n-AO/ZnO superlattice film/p-BST TE energy generator was determined to be ∼1.0 nW at a temperature difference of 80 K, corresponding to a significant improvement of ∼130% and ∼220% compared to the 100 nm-thick AO/ZnO film/p-BST and n-BT/p-BST film generators, respectively, owing to the enhancement of the TE properties, including the power factor of the superlattice film.

18.
J Nanosci Nanotechnol ; 15(9): 6729-33, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716236

ABSTRACT

We present the effects of film thickness and grain size on the out-of-plane thermal conductivities of single-phase Sb and Te thin films, which are of great interest for thermoelectric device applications. The thermal conductivities of the films were measured by the four-point-probe 3Ωo method, at room temperature. For this study, 50-, 100-, and 200-nm-thick Sb and Te thin films were prepared by electron-beam evaporation at room temperature. From the measured thermal conductivities, we evaluated that the average thermal conductivities of the Sb and Te thin films were 5.9-10.2 W/(m x K) and 0.8-1.2 W/(m x K), respectively, at room temperature. This result reveals that the thickness and grain size of each thin film strongly affect the modulation of its thermal conductivity at room temperature.

19.
Nanoscale Res Lett ; 10: 20, 2015.
Article in English | MEDLINE | ID: mdl-25852318

ABSTRACT

The effects of grain size and strain on the temperature-dependent thermal transport of antimony telluride (Sb2Te3) thin films, controlled using post-annealing temperatures of 200°C to 350°C, were investigated using the 3-omega method. The measured total thermal conductivities of 400-nm-thick thin films annealed at temperatures of 200°C, 250°C, 300°C, 320°C, and 350°C were determined to be 2.0 to 3.7 W/m · K in the 20 to 300 K temperature range. We found that the film grain size, rather than the strain, had the most prominent effect on the reduction of the total thermal conductivity. To confirm the effect of grain size on temperature-dependent thermal transport in the thin films, the experimental results were analyzed using a modified Callaway model approach.

20.
Biosens Bioelectron ; 67: 370-8, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25216977

ABSTRACT

Research on specific drug responses of circulating tumor cells (CTCs) provides very important information for treatment of cancer patients at a patient-specific level. For this reason, platforms for high capture efficiency of CTCs are essential for clinical evaluation of patient-specific drug responses of CTCs. Recently, nanostructure based platforms have been developed with a high capture efficiency of more than 93% due to high-affinity binding and the 3D nanotopographic features of the nanostructure substrate. In this study, the breast carcinoma cell-line (BT20) cells with an ultra-low abundance range were captured by streptavidin (STR)-functionalized silicon nanowire (SiNW) platforms for evaluation of capture efficiency. A capture efficiency of more than 90% was achieved. Specific drug responses of BT20 cells captured on STR-SiNW platforms were analyzed using tamoxifen or docetaxel as a function of incubation time and dose, and compared with a 96-well plate platform. The drug responses of CTCs on STR-SiNW platforms were more sensitive than a 96-well plate platform. In addition, CTCs were successfully captured and evaluated their size distribution from the blood of breast cancer patients using fluorescence imaging. In conclusion, we suggest that the SiNW platform is adaptable for clinical use in evaluation of CTCs and drug response tests.


Subject(s)
Biosensing Techniques , Breast Neoplasms/blood , Nanowires/chemistry , Neoplastic Cells, Circulating/drug effects , Breast Neoplasms/drug therapy , Docetaxel , Female , Humans , MCF-7 Cells , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating/pathology , Silicon/chemistry , Streptavidin/chemistry , Taxoids/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL