Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 19(7): e1011404, 2023 07.
Article in English | MEDLINE | ID: mdl-37463152

ABSTRACT

Pestis secunda (1356-1366 CE) is the first of a series of plague outbreaks in Europe that followed the Black Death (1346-1353 CE). Collectively this period is called the Second Pandemic. From a genomic perspective, the majority of post-Black Death strains of Yersinia pestis thus far identified in Europe display diversity accumulated over a period of centuries that form a terminal sub-branch of the Y. pestis phylogeny. It has been debated if these strains arose from local evolution of Y. pestis or if the disease was repeatedly reintroduced from an external source. Plague lineages descended from the pestis secunda, however, are thought to have persisted in non-human reservoirs outside Europe, where they eventually gave rise to the Third Pandemic (19th and 20th centuries). Resolution of competing hypotheses on the origins of the many post-Black Death outbreaks has been hindered in part by the low representation of Y. pestis genomes in archaeological specimens, especially for the pestis secunda. Here we report on five individuals from Germany that were infected with lineages of plague associated with the pestis secunda. For the two genomes of high coverage, one groups within the known diversity of genotypes associated with the pestis secunda, while the second carries an ancestral genotype that places it earlier. Through consideration of historical sources that explore first documentation of the pandemic in today's Central Germany, we argue that these data provide robust evidence to support a post-Black Death evolution of the pathogen within Europe rather than a re-introduction from outside. Additionally, we demonstrate retrievability of Y. pestis DNA in post-cranial remains and highlight the importance of hypothesis-free pathogen screening approaches in evaluations of archaeological samples.


Subject(s)
Plague , Yersinia pestis , Humans , Yersinia pestis/genetics , Plague/epidemiology , DNA, Bacterial/genetics , Genome, Bacterial , Europe/epidemiology , Phylogeny
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972424

ABSTRACT

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Subject(s)
Biological Evolution , Ecology/methods , Hominidae/microbiology , Metagenome/genetics , Microbiota/genetics , Mouth/microbiology , Africa , Animals , Bacteria/classification , Bacteria/genetics , Biofilms , Dental Plaque/microbiology , Geography , Gorilla gorilla/microbiology , Hominidae/classification , Humans , Pan troglodytes/microbiology , Phylogeny
3.
J Vis Exp ; (177)2021 11 30.
Article in English | MEDLINE | ID: mdl-34927609

ABSTRACT

The methods presented here seek to maximize the chances for the recovery of human DNA from ancient archaeological remains while limiting input sample material. This was done by targeting anatomical sampling locations previously determined to yield the highest amounts of ancient DNA (aDNA) in a comparative analysis of DNA recovery across the skeleton. Prior research has suggested that these protocols maximize the chances for the successful recovery of ancient human and pathogen DNA from archaeological remains. DNA yields were previously assessed by Parker et al. 2020 in a broad survey of aDNA preservation across multiple skeletal elements from 11 individuals recovered from the medieval (radiocarbon dated to a period of circa (ca.) 1040-1400 CE, calibrated 2-sigma range) graveyard at Krakauer Berg, an abandoned medieval settlement near Peißen Germany. These eight sampling spots, which span five skeletal elements (pars petrosa, permanent molars, thoracic vertebra, distal phalanx, and talus) successfully yielded high-quality ancient human DNA, where yields were significantly greater than the overall average across all elements and individuals. Yields were adequate for use in most common downstream population genetic analyses. Our results support the preferential use of these anatomical sampling locations for most studies involving the analyses of ancient human DNA from archaeological remains. Implementation of these methods will help to minimize the destruction of precious archaeological specimens.


Subject(s)
Archaeology , DNA, Ancient , Archaeology/methods , Bone and Bones/chemistry , DNA/genetics , DNA, Ancient/analysis , Humans , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL