Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
R Soc Open Sci ; 10(11): 230542, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920567

ABSTRACT

Estimating the influence that individual nodes have on one another in a Boolean network is essential to predict and control the system's dynamical behaviour, for example, detecting key therapeutic targets to control pathways in models of biological signalling and regulation. Exact estimation is generally not possible due to the fact that the number of configurations that must be considered grows exponentially with the system size. However, approximate, scalable methods exist in the literature. These methods can be divided into two main classes: (i) graph-theoretic methods that rely on representations of Boolean dynamics into static graphs and (ii) mean-field approaches that describe average trajectories of the system but neglect dynamical correlations. Here, we compare systematically the performance of these state-of-the-art methods on a large collection of real-world gene regulatory networks. We find comparable performance across methods. All methods underestimate the ground truth, with mean-field approaches having a better recall but a worse precision than graph-theoretic methods. Computationally speaking, graph-theoretic methods are faster than mean-field ones in sparse networks, but are slower in dense networks. The preference of which method to use, therefore, depends on a network's connectivity and the relative importance of recall versus precision for the specific application at hand.

2.
ArXiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37033454

ABSTRACT

Given the large size and complexity of most biochemical regulation and signaling networks, there is a non-trivial relationship between the micro-level logic of component interactions and the observed macro-dynamics. Here we address this issue by formalizing the concept of pathway modules developed by Marques-Pita and Rocha [1], which are sequences of state updates that are guaranteed to occur (barring outside interference) in the causal dynamics of automata networks after the perturbation of a subset of driver nodes. We present a novel algorithm to automatically extract pathway modules from networks and characterize the interactions that may take place between the modules. This methodology uses only the causal logic of individual node variables (micro-dynamics) without the need to compute the dynamical landscape of the networks (macro-dynamics). Specifically, we identify complex modules, which maximize pathway length and require synergy between their components. This allows us to propose a new take on dynamical modularity that partitions complex networks into causal pathways of variables that are guaranteed to transition to specific dynamical states given a perturbation to a set of driver nodes. Thus, the same node variable can take part in distinct modules depending on the state it takes. Our measure of dynamical modularity of a network is then inversely proportional to the overlap among complex modules and maximal when complex modules are completely decouplable from one another in the network dynamics. We estimate dynamical modularity for several genetic regulatory networks, including the full Drosophila melanogaster segment-polarity network. We discuss how identifying complex modules and the dynamical modularity portrait of networks explains the macro-dynamics of biological networks, such as uncovering the (more or less) decouplable building blocks of emergent computation (or collective behavior) in biochemical regulation and signaling.

3.
Nat Commun ; 13(1): 3457, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710639

ABSTRACT

The optimization problem aiming at the identification of minimal sets of nodes able to drive the dynamics of Boolean networks toward desired long-term behaviors is central for some applications, as for example the detection of key therapeutic targets to control pathways in models of biological signaling and regulatory networks. Here, we develop a method to solve such an optimization problem taking inspiration from the well-studied problem of influence maximization for spreading processes in social networks. We validate the method on small gene regulatory networks whose dynamical landscapes are known by means of brute-force analysis. We then systematically study a large collection of gene regulatory networks. We find that for about 65% of the analyzed networks, the minimal driver sets contain less than 20% of their nodes.


Subject(s)
Algorithms , Gene Regulatory Networks , Social Networking
SELECTION OF CITATIONS
SEARCH DETAIL