Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37644217

ABSTRACT

Progression to psychosis has been associated with increased cortical thinning in the frontal, temporal and parietal lobes in individuals at clinical high risk for the disorder (CHR-P). The timing and spatial extent of these changes are thought to be influenced by age. However, most evidence so far stems from adult samples. Longitudinal studies are essential to understanding the neuroanatomical changes associated to transition to psychosis during adolescence, and their relationship with age. We conducted a longitudinal, multisite study including adolescents at CHR-P and healthy controls (HC), aged 10-17 years. Structural images were acquired at baseline and at 18-month follow-up. Images were processed with the longitudinal pipeline in FreeSurfer. We used a longitudinal two-stage model to compute the regional cortical thickness (CT) change, and analyze between-group differences controlling for age, sex and scan, and corrected for multiple comparisons. Linear regression was used to study the effect of age at baseline. A total of 103 individuals (49 CHR-P and 54 HC) were included in the analysis. During follow-up, the 13 CHR-P participants who transitioned to psychosis exhibited greater CT decrease over time in the right parietal cortex compared to those who did not transition to psychosis and to HC. Age at baseline correlated with longitudinal changes in CT, with younger individuals showing greater cortical thinning in this region. The emergence of psychosis during early adolescence may have an impact on typical neuromaturational processes. This study provides new insights on the cortical changes taking place prior to illness onset.

2.
J Am Acad Child Adolesc Psychiatry ; 62(5): 593-600, 2023 05.
Article in English | MEDLINE | ID: mdl-36638884

ABSTRACT

OBJECTIVE: Identifying biomarkers of transition to psychosis in individuals at clinical high risk for psychosis (CHR-P) is essential to understanding the mechanisms underlying the disease. Although cross-sectional abnormalities in cortical surface area (CSA) have been demonstrated in individuals at CHR-P who transition to psychosis (CHR-P-T) compared with those who do not (CHR-P-NT), how CSA longitudinally develops remains unclear, especially in younger individuals. We set out to compare CSA in adolescents at CHR-P and healthy controls (HC) over 2 points in time. METHOD: A longitudinal multicenter study was performed in adolescents at CHR-P in comparison to HC and according to transition to psychosis. Magnetic resonance imaging scans were acquired at baseline, at 18-month follow-up, or at the time of transition. Images were pre-processed and hemisphere and regional CSA were computed using FreeSurfer. Between-group analyses were performed with linear mixed-effects models. RESULTS: A total of 313 scans (107 CHR-P and 102 HC) were included in the analysis. At 18 months, the rate of transition to psychosis in CHR-P was 23.4%. Adolescents at CHR-P-T presented greater age-related decrease in CSA in the left parietal and occipital lobes compared with HC, and in the bilateral parietal lobe and right frontal lobe relative to CHR-P-NT. These results were not influenced by antipsychotic treatment, cannabis use, or intelligence quotient (IQ). CONCLUSION: Adolescents at CHR-P that developed a psychotic disorder presented different developmental trajectories of CSA relative to those who did not. A relatively greater decrease in CSA in the parietal and frontal lobes may index clinical transition to psychosis in adolescents at CHR-P.


Subject(s)
Cannabis , Psychotic Disorders , Humans , Adolescent , Cross-Sectional Studies , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Parietal Lobe/pathology , Magnetic Resonance Imaging , Prodromal Symptoms , Longitudinal Studies
SELECTION OF CITATIONS
SEARCH DETAIL