Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 392
Filter
Add more filters

Publication year range
1.
Drug Resist Updat ; 75: 101087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678745

ABSTRACT

In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Rec A Recombinases , SOS Response, Genetics , SOS Response, Genetics/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Ciprofloxacin/pharmacology , Humans , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Drug Resistance, Bacterial/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Damage/drug effects , Whole Genome Sequencing , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects , Adaptation, Physiological , DNA Repair/drug effects , DNA-Binding Proteins
2.
J Clin Microbiol ; 62(2): e0121123, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38284762

ABSTRACT

The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.


Subject(s)
Bacteria , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods , Whole Genome Sequencing , Ataxia Telangiectasia Mutated Proteins
3.
J Antimicrob Chemother ; 79(3): 641-647, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38305703

ABSTRACT

BACKGROUND: BaeS/BaeR is a two-component system of Escherichia coli that controls the expression of porins and efflux pumps. Its role in beta-lactam resistance is limited. OBJECTIVES: To study the role of baeS/baeR two-component system in temocillin resistance in E. coli. METHODS: E. coli strain BW25113 and single-gene deletion mutants related to two-component systems were collected from the KEIO collection. Double-gen deletion mutants were generated. Temocillin-resistant mutant frequencies were determined at 32 mg/L. E. coli BW25113 mutants were selected by selective pressure from serial passages. Biological costs were analysed by growth curves. Genomes of the generated mutants were sequenced. The expression level of the mdtA, mdtB, mdtC, acrD and tolC in the ΔbaeS mutant was determined by RT-PCR (with/without temocillin exposure). RESULTS: The frequency of temocillin mutants ranged from 2.12 × 10-8 to 4.51 × 10-8 in single-porin mutants. No mutants were recovered from E. coli BW25113 (>10-9). Selection of temocillin-resistant variants by serial passage yielded mutants up to 128 mg/L. Mutations were found in the baeS gene. Temocillin MICs ranged from 4 to 32 mg/L (highest MICs for ΔbaeS and ΔompR). The efflux pumps mdtA, mdtB, mdtC and acrD pumps were overexpressed 3-10-fold in the presence of temocillin in ΔbaeS compared to control. CONCLUSIONS: Mutations in the sensor histidine kinase, baeS, may be involved in temocillin resistance through the expression of the efflux pumps mdtABC and acrD. In addition, the low mutation rate may be a good predictor of temocillin activity.


Subject(s)
Cadaverine/analogs & derivatives , Escherichia coli Proteins , Escherichia coli , Penicillins , Escherichia coli/genetics , Biological Transport , Trans-Activators , Escherichia coli Proteins/genetics
4.
J Antimicrob Chemother ; 79(4): 784-789, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38334407

ABSTRACT

BACKGROUND: Temocillin is an old antimicrobial that is resistant to hydrolysis by ESBLs but has variable activity against carbapenemase-producing Enterobacteriaceae. The current EUCAST susceptibility breakpoints for Enterobacterales are set at ≤16 mg/L (susceptible with increased exposure) based on a dose of 2 g q8h, but there is limited information on the efficacy of this dose against temocillin-susceptible carbapenemase-producing Klebsiella pneumoniae isolates. OBJECTIVES: To evaluate the efficacy of this dose using a hollow-fibre infection model (HFIM) against six KPC-2-producing clinical isolates of K. pneumoniae. METHODS: The isolates were characterized by WGS and temocillin susceptibility was determined using standard and high inoculum temocillin. Mutant frequencies were estimated and temocillin activity was tested in time-kill assays and in the HFIM. At standard conditions, three of the isolates were classified as susceptible (MIC ≤ 16 mg/L) and three as resistant (MIC > 16 mg/L). The HFIM was performed over 3 days to mimic human-like pharmacokinetics of 2 g q8h. Bacterial counts were performed by plating on Mueller-Hinton agar (MHA) and MHA containing 64 mg/L temocillin to detect resistant subpopulations. RESULTS: All isolates showed a reduction in bacterial population of at least 3 log cfu/mL within the first 8 h of simulated treatment in the hollow-fibre assay. Regrowth was observed for the three resistant isolates and one of the susceptible ones. The MIC value for these isolates was higher by at least two dilutions compared with their initial values. CONCLUSIONS: These data suggest that an optimized pharmacokinetic regimen may be of clinical interest for the treatment of KPC-2-producing K. pneumoniae susceptible to temocillin. These data showed activity of temocillin against KPC-2-producing K. pneumoniae susceptible to temocillin; however, a dose of 2g q8h administered over 30 min may be inadequate to prevent the emergence of resistant variants.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Penicillins , Humans , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae , beta-Lactamases/genetics , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacterial Proteins/genetics
5.
Eur J Clin Microbiol Infect Dis ; 43(3): 445-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38157139

ABSTRACT

PURPOSE: Relebactam is a novel ß-lactamase inhibitor, which, when combined with imipenem/cilastatin, is active against both class A and class C ß-lactamases. To evaluate in vitro antimicrobial activity of imipenem/relebactam against a collection of recent clinical isolates of carbapenem-non-susceptible P. aeruginosa and K. pneumoniae ST258 and ST512 KPC producers belonging to different lineages from hospitals in Southern Spain. METHODS: Six hundred and seventy-eight isolates were tested: 265 K. pneumoniae (230 ST512/KPC-3 and 35 ST258/KPC-3) and 413 carbapenem-non-susceptible P. aeruginosa. Imipenem, piperacillin/tazobactam, ceftazidime, cefepime, aztreonam, ceftolozane/tazobactam, meropenem, amikacin, ciprofloxacin, colistin, and ceftazidime/avibactam were used as comparators against P. aeruginosa. Against K. pneumoniae ceftazidime, cefepime, aztreonam, and ceftolozane/tazobactam were not tested, and tigecycline was studied instead. MICs were determined in duplicate by broth microdilution according to EUCAST guidelines. RESULTS: Imipenem/relebactam displayed potent in vitro activity against both sequence types of KPC-3-producing K. pneumoniae. MIC50 and MIC90 values were 0.25 mg/L and 1 mg/L, respectively, with percent of susceptible isolates >97%. Only three K. pneumoniae ST512/KPC-3 isolates and one ST258/KPC-3 were resistant to imipenem/relebactam. Relebactam sensitized 98.5% of K. pneumoniae isolates resistant to imipenem. The activity of imipenem/relebactam against P. aeruginosa was moderate (susceptibility rate: 62.7%). Analysis of the acquired and mutational resistome of isolates with high levels of resistance to imipenem/relebactam has not shown a clear association between them. CONCLUSION: Imipenem/relebactam showed excellent activity against K. pneumoniae KPC-3. The activity of imipenem/relebactam against imipenem-resistant P. aeruginosa was moderate.


Subject(s)
Azabicyclo Compounds , Cephalosporins , Imipenem , Pseudomonas Infections , Humans , Imipenem/pharmacology , Ceftazidime/pharmacology , Pseudomonas aeruginosa , Klebsiella pneumoniae , Cefepime , Aztreonam , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Tazobactam/pharmacology , beta-Lactamases , Drug Combinations , Microbial Sensitivity Tests
6.
Eur J Clin Microbiol Infect Dis ; 43(2): 279-296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041722

ABSTRACT

PURPOSE: To characterize the resistance mechanisms affecting the cefepime-taniborbactam combination in a collection of carbapenemase-producing Enterobacterales (CPE) and carbapenem-resistant Pseudomonas spp. (predominantly P. aeruginosa; CRPA) clinical isolates. METHODS: CPE (n = 247) and CRPA (n = 170) isolates were prospectively collected from patients admitted to 8 Spanish hospitals. Susceptibility to cefepime-taniborbactam and comparators was determined by broth microdilution. Cefepime-taniborbactam was the most active agent, inhibiting 97.6% of CPE and 67.1% of CRPA (MICs ≤ 8/4 mg/L). All isolates with cefepime-taniborbactam MIC > 8/4 mg/L (5 CPE and 52 CRPA) and a subset with MIC ≤ 8/4 mg/L (23 CPE and 24 CRPA) were characterized by whole genome sequencing. RESULTS: A reduced cefepime-taniborbactam activity was found in two KPC-ST307-Klebsiella pneumoniae isolates with altered porins [KPC-62-K. pneumoniae (OmpA, OmpR/EnvZ), KPC-150-K. pneumoniae (OmpK35, OmpK36)] and one each ST133-VIM-1-Enterobacter hormaechei with altered OmpD, OmpR, and OmpC; IMP-8-ST24-Enterobacter asburiae; and NDM-5-Escherichia coli with an YRIN-inserted PBP3 and a mutated PBP2. Among the P. aeruginosa (68/76), elevated cefepime-taniborbactam MICs were mostly associated with GES-5-ST235, OXA-2+VIM-2-ST235, and OXA-2+VIM-20-ST175 isolates also carrying mutations in PBP3, efflux pump (mexR, mexZ) and AmpC (mpl) regulators, and non-carbapenemase-ST175 isolates with AmpD-T139M and PBP3-R504C mutations. Overall, accumulation of these mutations was frequently detected among non-carbapenemase producers. CONCLUSIONS: The reduced cefepime-taniborbactam activity among the minority of isolates with elevated cefepime-taniborbactam MICs is not only due to IMP carbapenemases but also to the accumulation of multiple resistance mechanisms, including PBP and porin mutations in CPE and chromosomal mutations leading to efflux pumps up-regulation, AmpC overexpression, and PBP modifications in P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Borinic Acids , Carbapenems , Carboxylic Acids , Humans , Cefepime/pharmacology , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas/genetics , Spain/epidemiology , beta-Lactamases/genetics , Pseudomonas aeruginosa/genetics , Microbial Sensitivity Tests
7.
Infection ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703288

ABSTRACT

BACKGROUND: Community-acquired (CA) and healthcare-associated (HCA) infections caused by carbapenemase-producing Enterobacterales (CPE) are not well characterized. The objective was to provide detailed information about the clinical and molecular epidemiological features of nosocomial, HCA and CA infections caused by carbapenemase-producing Klebsiella pneumoniae (CP-Kp) and Escherichia coli (CP-Ec). METHODS: A prospective cohort study was performed in 59 Spanish hospitals from February to March 2019, including the first 10 consecutive patients from whom CP-Kp or CP-Ec were isolated. Patients were stratified according to acquisition type. A multivariate analysis was performed to identify the impact of acquisition type in 30-day mortality. RESULTS: Overall, 386 patients were included (363 [94%] with CP-Kp and 23 [6%] CP-Ec); in 296 patients (76.3%), the CPE was causing an infection. Acquisition was CA in 31 (8.0%) patients, HCA in 183 (47.4%) and nosocomial in 172 (48.3%). Among patients with a HCA acquisition, 100 (54.6%) had been previously admitted to hospital and 71 (38.8%) were nursing home residents. Urinary tract infections accounted for 19/23 (82.6%), 89/130 (68.5%) and 42/143 (29.4%) of CA, HCA and nosocomial infections, respectively. Overall, 68 infections (23%) were bacteremia (8.7%, 17.7% and 30.1% of CA, HCA and nosocomial, respectively). Mortality in infections was 28% (13%, 14.6% and 42.7% of CA, HCA and nosocomial, respectively). Nosocomial bloodstream infections were associated with increased odds for mortality (adjusted OR, 4.00; 95%CI 1.21-13.19). CONCLUSIONS: HCA and CA infections caused by CPE are frequent and clinically significant. This information may be useful for a better understanding of the epidemiology of CPE.

8.
Am J Transplant ; 23(7): 1022-1034, 2023 07.
Article in English | MEDLINE | ID: mdl-37028515

ABSTRACT

We aimed to compare the efficacy of ceftazidime-avibactam (CAZ-AVI) versus the best available therapy (BAT) in solid organ transplant (SOT) recipients with bloodstream infection caused by carbapenemase-producing Klebsiella pneumoniae (CPKP-BSI). A retrospective (2016-2021) observational cohort study was performed in 14 INCREMENT-SOT centers (ClinicalTrials.gov identifier: NCT02852902; Impact of Specific Antimicrobials and MIC Values on the Outcome of Bloodstream Infections Due to ESBL- or Carbapenemase-producing Enterobacterales in Solid Organ Transplantation: an Observational Multinational Study). Outcomes were 14-day and 30-day clinical success (complete resolution of attributable manifestations, adequate source control, and negative follow-up blood cultures) and 30-day all-cause mortality. Multivariable logistic and Cox regression analyses adjusted for the propensity score to receive CAZ-AVI were constructed. Among 210 SOT recipients with CPKP-BSI, 149 received active primary therapy with CAZ-AVI (66/149) or BAT (83/149). Patients treated with CAZ-AVI had higher 14-day (80.7% vs 60.6%, P = .011) and 30-day (83.1% vs 60.6%, P = .004) clinical success and lower 30-day mortality (13.25% vs 27.3%, P = .053) than those receiving BAT. In the adjusted analysis, CAZ-AVI increased the probability of 14-day (adjusted odds ratio [aOR], 2.65; 95% confidence interval [CI], 1.03-6.84; P = .044) and 30-day clinical success (aOR, 3.14; 95% CI, 1.17-8.40; P = .023). In contrast, CAZ-AVI therapy was not independently associated with 30-day mortality. In the CAZ-AVI group, combination therapy was not associated with better outcomes. In conclusion, CAZ-AVI may be considered a first-line treatment in SOT recipients with CPKP-BSI.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Sepsis , Humans , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae , Retrospective Studies , Drug Combinations , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy
9.
J Antimicrob Chemother ; 78(7): 1658-1666, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37260299

ABSTRACT

BACKGROUND: Fosfomycin is a potentially attractive option as step-down therapy for bacteraemic urinary tract infections (BUTI), but available data are scarce. Our objective was to compare the effectiveness and safety of fosfomycin trometamol and other oral drugs as step-down therapy in patients with BUTI due to MDR Escherichia coli (MDR-Ec). METHODS: Participants in the FOREST trial (comparing IV fosfomycin with ceftriaxone or meropenem for BUTI caused by MDR-Ec in 22 Spanish hospitals from June 2014 to December 2018) who were stepped-down to oral fosfomycin (3 g q48h) or other drugs were included. The primary endpoint was clinical and microbiological cure (CMC) 5-7 days after finalization of treatment. A multivariate analysis was performed using logistic regression to estimate the association of oral step-down with fosfomycin with CMC adjusted for confounders. RESULTS: Overall, 61 patients switched to oral fosfomycin trometamol and 47 to other drugs (cefuroxime axetil, 28; amoxicillin/clavulanic acid and trimethoprim/sulfamethoxazole, 7 each; ciprofloxacin, 5) were included. CMC was reached by 48/61 patients (78.7%) treated with fosfomycin trometamol and 38/47 (80.9%) with other drugs (difference, -2.2; 95% CI: -17.5 to 13.1; P = 0.38). Subgroup analyses provided similar results. Relapses occurred in 9/61 (15.0%) and 2/47 (4.3%) of patients, respectively (P = 0.03). The adjusted OR for CMC was 1.11 (95% CI: 0.42-3.29, P = 0.75). No relevant differences in adverse events were seen. CONCLUSIONS: Fosfomycin trometamol might be a reasonable option as step-down therapy in patients with BUTI due to MDR-Ec but the higher rate of relapses would need further assessment.


Subject(s)
Escherichia coli Infections , Fosfomycin , Urinary Tract Infections , Humans , Fosfomycin/adverse effects , Tromethamine/therapeutic use , Anti-Bacterial Agents/adverse effects , Escherichia coli , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Recurrence
10.
J Bacteriol ; 204(7): e0008822, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35758752

ABSTRACT

This study characterizes a new genetic structure containing a multicopy of a blaVIM-2 variant with an A676C substitution, blaVIM-63. This gene was detected on the chromosome of two carbapenem-resistant clinical strains of Citrobacter freundii ST22 recovered from two patients, separated by a 6-month period, and previously in Pseudomonas aeruginosa ST2242 from the same hospital unit. Short-read sequencing was used to characterize the new variant in both species, and long-read sequencing was used to characterize the genome of C. freundii. On the P. aeruginosa chromosome, the blaVIM-63 gene was inserted between ISPsy 42-type sequences, flanked by an intl1 sequence, nearby aph(3')-VI, and sul1. On the C. freundii chromosome, the blaVIM-63 gene was inserted into a Tn6230-like transposon as a stable five-tandem-repeat multimer, flanked by the same intl1 as in P. aeruginosa. This structure was stable across subcultures and did not change in the presence of carbapenems. The blaVIM-63 gene was cloned into the pCR-Blunt plasmid to study antimicrobial susceptibility patterns and into pET29a for kinetic activity analysis. VIM-63 showed higher Km values than VIM-2 for ceftazidime and cefepime and higher kcat values for cefotaxime, ceftazidime, imipenem, and ertapenem, without differences in MIC values. This is the first study to describe this new variant, VIM-63, in two different species with a chromosomal location integrated into different mobile elements and the first to describe a stable multimer of a metallo-ß-lactamase. Despite the amino acid substitution, the susceptibility pattern of the new variant was similar to that of VIM-2. IMPORTANCE VIM group metallo-ß-lactamases are usually captured by IntI1 integrases. This work describes the detection for the first time of a novel, previously unknown variant of VIM-2, VIM-63. This carbapenemase has been found on the chromosome of two different species, Citrobacter freundii and Pseudomonas aeruginosa, from the same hospital. The adjacent genetic environment of the blaVIM-63 gene would indicate that the capture of this gene by IntI1 has occurred in two different genetic events in each of the species, and in one there has been a stable integration of tandem copies of this gene.


Subject(s)
Ceftazidime , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbapenems/pharmacology , Chromosomes/metabolism , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , beta-Lactamases/genetics
11.
Antimicrob Agents Chemother ; 66(7): e0033422, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35762798

ABSTRACT

We describe the first occurrence in Spain of community cases of CTX-M-27-producing Shigella sonnei sequence type 152 (ST152), resistant to quinolones and azithromycin. The cases included adult males and also one pediatric case. The isolates were clustered together with an Australian isolate and differed from other outbreak-causing strains in England by more than 50 alleles. They carried the blaCTX-M-27 gene on an 83-Kb F2:A-:B- plasmid, similar to that found in a British isolate.


Subject(s)
Dysentery, Bacillary , Shigella sonnei , Adult , Anti-Bacterial Agents/pharmacology , Australia , Child , Clone Cells , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Humans , Male , Plasmids/genetics , Shigella sonnei/genetics , Spain/epidemiology , beta-Lactamases/genetics
12.
Antimicrob Agents Chemother ; 66(3): e0216121, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35007130

ABSTRACT

Novel ß-lactam-ß-lactamase inhibitor combinations currently approved for clinical use are poorly active against metallo-ß-lactamase (MBL)-producing strains. We evaluated the in vitro activity of cefepime-taniborbactam (FTB [formerly cefepime-VNRX-5133]) and comparator agents against carbapenemase-producing Enterobacterales (n = 247) and carbapenem-resistant Pseudomonas species (n = 170) clinical isolates prospectively collected from different clinical origins in patients admitted to 8 Spanish hospitals. FTB was the most active agent in both Enterobacterales (97.6% MICFTB, ≤8/4 mg/L) and Pseudomonas (67.1% MICFTB, ≤8/4 mg/L) populations. The MICFTB was >8 mg/L in 6/247 (2.4%) Enterobacterales isolates (3 KPC-producing Klebsiella pneumoniae isolates, 1 VIM-producing Enterobacter cloacae isolate, 1 IMP-producing E. cloacae isolate, and 1 NDM-producing Escherichia coli isolate) and in 56/170 (32.9%) Pseudomonas isolates, 19 of them carbapenemase producers (15 producers of VIM, 2 of GES, 1 of GES+VIM, and 1 of GES+KPC). Against the Enterobacterales isolates with meropenem MICs of >2 mg/L (138/247), FTB was the most active agent against both serine-ß-lactamases (107/138) and MBL producers (31/138) (97.2 and 93.5% MICFTB, ≤8/4 mg/L, respectively), whereas the activity of comparators was reduced, particularly against the MBL producers (ceftazidime-avibactam, 94.4 and 12.9%, meropenem-vaborbactam, 85.0 and 64.5%, imipenem-relebactam, 76.6 and 9.7%, ceftolozane-tazobactam, 1.9 and 0%, and piperacillin-tazobactam, 0 and 0%, respectively). Among the meropenem-resistant Pseudomonas isolates (163/170; MIC, >2 mg/L), the activities of FTB against serine-ß-lactamase (35/163) and MBL (43/163) producers were 88.6 and 65.1%, respectively, whereas the susceptibilities of comparators were as follows: ceftazidime-avibactam, 88.5 and 16.0%, meropenem-vaborbactam, 8.5 and 7.0%, imipenem-relebactam, 2.9 and 2.3%, ceftolozane-tazobactam, 0 and 2.3%, and piperacillin-tazobactam, 0 and 0%, respectively. Microbiological results suggest FTB as a potential therapeutic option in patients infected with carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas isolates, including MBL producers.


Subject(s)
Pseudomonas aeruginosa , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Bacterial Proteins , Borinic Acids , Carboxylic Acids , Cefepime/pharmacology , Humans , Microbial Sensitivity Tests , Spain
13.
J Antimicrob Chemother ; 77(5): 1272-1281, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35238930

ABSTRACT

OBJECTIVES: To search for new means of combatting carbapenemase-producing strains of Klebsiella pneumoniae by repurposing the anti-helminth drug niclosamide as an antimicrobial agent and combining it with the efflux pump inhibitor (EPI) phenyl-arginine-ß-naphthylamide (PaßN). METHODS: Niclosamide and PaßN MICs were determined for six clinical K. pneumoniae isolates harbouring different carbapenemases by broth microdilution and chequerboard assays. Time-kill curves in the presence of each drug alone and in combination were conducted. The viability of bacterial cells in the presence of repetitive exposures at 8 h to the treatment at the same concentration of niclosamide and/or PaßN (adapted isolates) was determined. The acrAB-tolC genes and their regulators were sequenced and quantitative RT-PCR was performed to assess whether the acrA gene was overexpressed in adapted isolates compared with non-adapted isolates. Finally, the MICs of several antimicrobials were determined for the adapted isolates. RESULTS: Niclosamide and PaßN had synergistic effects on the six isolates in vitro, but adaptation appeared when the treatment was applied to the medium every 8 h, with an increase of 6- to 12-fold in the MIC of PaßN. Sequencing revealed different mutations in the regulators of the tripartite AcrAB-TolC efflux pump (ramR and acrR) that may be responsible for the overexpression of the efflux pump and the adaptation to this combination. Co-resistance to different antimicrobials confirmed the overexpression of the AcrAB-TolC efflux pump. CONCLUSIONS: Despite the synergistic effect that preliminary in vitro stages may suggest, the combinations of drugs and EPI may generate adapted phenotypes associated with antimicrobial resistance that must be taken into consideration.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Dipeptides/pharmacology , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Niclosamide/pharmacology
14.
Eur J Clin Microbiol Infect Dis ; 41(2): 335-338, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34787750

ABSTRACT

Recently, the emergence of an international lineage of the CTX-M-27-producing clade C1 of Escherichia coli ST131 is being observed. The aim is to see if this strain has also been introduced in our area. Twenty-eight (33%) out of 86 individuals from two LTCFs in Seville were found to be colonized with fluoroquinolone-resistant E. coli ST131 and 46% isolates were ESBL/pAmpC producers. C1 isolates were more common than C2 and more frequently produced blaESBL/pAmpC genes (53% vs 33%). Strain sharing was observed in 6 groups of 2-5 cases (61%). A differentiated cluster of 5 C1-CTX-M-27 isolates was found which lacked the M27PP1 region.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , beta-Lactamases/metabolism , Anti-Bacterial Agents , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Humans , Long-Term Care , Polymorphism, Single Nucleotide , Prevalence , Spain/epidemiology , beta-Lactamases/genetics
15.
Transpl Infect Dis ; 24(4): e13881, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691028

ABSTRACT

BACKGROUND: Infections caused by multidrug-resistant gram-negative bacilli (MDR GNB), in particular extended-spectrum ß-lactamase-producing (ESBL-E) and carbapenem-resistant Enterobacterales (CRE), pose a major threat in solid organ transplantation (SOT). Outcome prediction and therapy are challenging due to the scarcity of randomized clinical trials (RCTs) or well-designed observational studies focused on this population. METHODS: Narrative review with a focus on the contributions provided by the ongoing multinational INCREMENT-SOT consortium (ClinicalTrials identifier NCT02852902) in the fields of epidemiology and clinical management. RESULTS: The Spanish Society of Transplantation (SET), the Group for Study of Infection in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbiology (GESITRA-SEIMC), and the Spanish Network for Research in Infectious Diseases (REIPI) recently published their recommendations for the management of MDR GNB infections in SOT recipients. We revisit the SET/GESITRA-SEIMC/REIPI document taking into consideration new evidence that emerged on the molecular epidemiology, prognostic stratification, and treatment of post-transplant ESBL-E and CRE infections. Results derived from the INCREMENT-SOT consortium may support the therapeutic approach to post-transplant bloodstream infection (BSI). The initiatives devoted to sparing the use of carbapenems in low-risk ESBL-E BSI or to repurposing existing non-ß-lactam antibiotics for CRE in both non-transplant and transplant patients are reviewed, as well as the eventual positioning in the specific SOT setting of recently approved antibiotics. CONCLUSION: Due to the clinical complexity and relative rarity of ESBL-E and CRE infections in SOT recipients, multinational cooperative efforts such as the INCREMENT-SOT Project should be encouraged. In addition, RCTs focused on post-transplant serious infection remain urgently needed.


Subject(s)
Communicable Diseases , Organ Transplantation , Sepsis , Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Gram-Negative Bacteria , Humans , Organ Transplantation/adverse effects , Sepsis/drug therapy , beta-Lactamases
16.
Antimicrob Agents Chemother ; 65(9): e0090021, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34228538

ABSTRACT

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 ß-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD600) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model (Galleria mellonella). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 ß-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 ß-lactamase.


Subject(s)
Bacteriophages , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Humans , Imipenem/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mitomycin/pharmacology , beta-Lactamases/genetics
17.
Antimicrob Agents Chemother ; 65(11): e0110221, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34370578

ABSTRACT

There are scarce data on the efficacy of ertapenem in the treatment of bacteremia due to extended-spectrum-beta-lactamase (ESBL)-producing Enterobacterales (ESBL-E) in kidney transplant (KT) recipients. We evaluated the association between treatment with ertapenem or meropenem and clinical cure in KT recipients with nonsevere bacteremic urinary tract infections (B-UTI) caused by ESBL-E. We performed a registered, retrospective, international (29 centers in 14 countries) cohort study (INCREMENT-SOT, NCT02852902). The association between targeted therapy with ertapenem versus meropenem and clinical cure at day 14 (the principal outcome) was studied by logistic regression. Propensity score matching and desirability of outcome ranking (DOOR) analyses were also performed. A total of 201 patients were included; only 1 patient (treated with meropenem) in the cohort died. Clinical cure at day 14 was reached in 45/100 (45%) and 51/101 (50.5%) of patients treated with ertapenem and meropenem, respectively (adjusted OR 1.29; 95% CI 0.51 to 3.22; P = 0.76); the propensity score-matched cohort included 55 pairs (adjusted OR for clinical cure at day 14, 1.18; 95% CI 0.43 to 3.29; P = 0.74). In this cohort, the proportion of cases treated with ertapenem with better DOOR than with meropenem was 49.7% (95% CI, 40.4 to 59.1%) when hospital stay was considered. It ranged from 59 to 67% in different scenarios of a modified (weights-based) DOOR sensitivity analysis when potential ecological advantage or cost was considered in addition to outcome. In conclusion, targeted therapy with ertapenem appears as effective as meropenem to treat nonsevere B-UTI due to ESBL-E in KT recipients and may have some advantages.


Subject(s)
Bacteremia , Kidney Transplantation , Urinary Tract Infections , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Cohort Studies , Ertapenem , Humans , Propensity Score , Retrospective Studies , Urinary Tract Infections/drug therapy , beta-Lactamases
18.
J Antimicrob Chemother ; 76(5): 1187-1196, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33555012

ABSTRACT

OBJECTIVES: To evaluate the proficiency of microbiology laboratories in Spain in antimicrobial susceptibility testing (AST) of Staphylococcus spp. MATERIALS AND METHODS: Eight Staphylococcus spp. with different resistance mechanisms were selected: six Staphylococcus aureus (CC-01/mecA, CC-02/mecC, CC-03/BORSA, CC-04/MLSBi, CC-06/blaZ and CC-07/linezolid resistant, cfr); one Staphylococcus epidermidis (CC-05/linezolid resistant, 23S rRNA mutation); and one Staphylococcus capitis (CC-08/daptomycin non-susceptible). Fifty-one laboratories were asked to report: (i) AST system used; (ii) antimicrobial MICs; (iii) breakpoints used (CLSI or EUCAST); and (iv) clinical category. Minor, major and very major errors (mEs, MEs and VMEs, respectively) were determined. RESULTS: The greatest MIC discrepancies found were: (i) by AST method: 19.4% (gradient diffusion); (ii) by antimicrobial agent: daptomycin (21.3%) and oxacillin (20.6%); and (iii) by isolate: CC-07/cfr (48.0%). The greatest error rates were: (i) by AST method: gradient diffusion (4.3% and 5.1% VMEs, using EUCAST and CLSI, respectively); (ii) by breakpoint: 3.8% EUCAST and 2.3% CLSI; (iii) by error type: mEs (0.8% EUCAST and 1.0% CLSI), MEs (1.8% EUCAST and 0.7% CLSI) and VMEs (1.2% EUCAST and 0.6% CLSI); (iii) by antimicrobial agent: VMEs (4.7% linezolid and 4.3% oxacillin using EUCAST); MEs (14.3% fosfomycin, 9.1% tobramycin and 5.7% gentamicin using EUCAST); and mEs (22.6% amikacin using EUCAST). CONCLUSIONS: Clinical microbiology laboratories should improve their ability to determine the susceptibility of Staphylococcus spp. to some antimicrobial agents to avoid reporting false-susceptible or false-resistant results. The greatest discrepancies and errors were associated with gradient diffusion, EUCAST breakpoints and some antimicrobials (mEs for aminoglycosides; MEs for fosfomycin, aminoglycosides and oxacillin; and VMEs for linezolid and oxacillin).


Subject(s)
Oxacillin , Staphylococcus , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Phenotype , Spain
19.
J Antimicrob Chemother ; 76(7): 1928-1936, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33769481

ABSTRACT

BACKGROUND: Carbapenem-resistant Gram-negative bacilli (CR-GNB) are among the most threatening microorganisms worldwide and carbapenem use facilitates their spread. Antimicrobial stewardship programmes (ASPs) can help to optimize the use of antibiotics. This study evaluates the impact of a multifaceted educational ASP on carbapenem use and on the epidemiology of CR-GNB. METHODS: We conducted a quasi-experimental, time-series study in seven hospitals, from January 2014 to September 2018. The key intervention was composed of educational interviews promoting the appropriate use of carbapenems. The primary endpoints were carbapenem consumption and incidence density (ID) of CR-GNB. All non-duplicated CR-GNB clinical isolates were tested using phenotypic assays and PCR for the presence of carbapenemases. Joinpoint regression and interrupted time-series analyses were used to determine trends. RESULTS: A decrease in carbapenem consumption throughout the study period [average quarterly percentage change (AQPC) -1.5%, P < 0.001] and a -8.170 (-16.064 to -0.277) level change following the intervention were observed. The ID of CR-Acinetobacter baumannii decreased (AQPC -3.5%, P = 0.02) and the overall ID of CR-GNB remained stable (AQPC -0.4%, P = 0.52). CR-GNB, CR-Pseudomonas aeruginosa and CR-A. baumannii IDs per hospital correlated with the local consumption of carbapenems. The most prevalent carbapenem resistance mechanisms were OXA-23 for CR-A. baumannii (76.1%), OXA-48 for CR-Klebsiella pneumoniae (66%) and no carbapenemases for CR-P. aeruginosa (91.7%). The epidemiology of carbapenemases was heterogeneous throughout the study, especially for carbapenemase-producing Enterobacteriaceae. CONCLUSIONS: In conclusion, a multifaceted, educational interview-based ASP targeting carbapenem prescribing reduced carbapenem use and the ID of CR-A. baumannii.


Subject(s)
Antimicrobial Stewardship , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Carbapenems/pharmacology , Carbapenems/therapeutic use , Gram-Negative Bacteria , beta-Lactamases/genetics
20.
Article in English | MEDLINE | ID: mdl-34787748

ABSTRACT

The Escherichia coli ST131 H30-Rx subclone vehicles CTX-M-15 plasmids and mutations in gyrA and parC conferring multidrug resistance successfully in the clinical setting. The aim of this study was (1) to investigate the relationship of specific topoisomerase mutations on the stability of IncF (CTX-M producing) plasmids using isogenic E. coli mutants and (2) to investigate the impact of the IncF-type plasmids present in the E. coli clone ST131 on the evolution of quinolone resistance. E. coli ATCC 25922 (background strain) and derived mutants encoding specific QRDR substitutions were used. Also, NGS-characterized IncFIA and IncFIB plasmids (encoding CTX-M genes) were included. Plasmid stability was evaluated by sequential dilutions into Luria broth medium without antibiotics for 7 days. Mutant frequency to ciprofloxacin was also evaluated. Moderate differences in the IncF plasmids stability were observed among E. coli ATCC 25922 and isogenic mutants. Under our experimental conditions, the fluctuation of bacteria harboring plasmids was less than 0.5-log(10) in all cases. In the mutant frequency tests, it was observed that the presence of these IncF plasmids increased this value significantly (10-1000-fold). Quinolone resistance substitutions in gyrA or parC genes, frequently found associated with E. coli clone ST131, do not modify the stability of ST131-associated IncFIA and IncFIB plasmids under in vitro conditions. IncF-type plasmids present in E. coli clone ST131 facilitate the selection of resistance to quinolones. These results are consistent with the clinical scenario in which the combination of resistance to quinolones and beta-lactams is highly frequent in the E. coli clone ST131.

SELECTION OF CITATIONS
SEARCH DETAIL