Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Hum Mol Genet ; 27(8): 1366-1381, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29432563

ABSTRACT

Traumatic brain injury (TBI) has been predicted to be a predisposing factor for amyotrophic lateral sclerosis (ALS) and other neurological disorders. Despite the importance of TBI in ALS progression, the underlying cellular and molecular mechanisms are still an enigma. Here, we examined the contribution of TBI as an extrinsic factor and investigated whether TBI influences the susceptibility of developing neurodegenerative symptoms. To evaluate the effects of TBI in vivo, we applied mild to severe trauma to Drosophila and found that TBI leads to the induction of stress granules (SGs) in the brain. The degree of SGs induction directly correlates with the level of trauma. Furthermore, we observed that the level of mortality is directly proportional to the number of traumatic hits. Interestingly, trauma-induced SGs are ubiquitin, p62 and TDP-43 positive, and persistently remain over time suggesting that SGs might be aggregates and exert toxicity in our fly models. Intriguingly, TBI on animals expressing ALS-linked genes increased mortality and locomotion dysfunction suggesting that mild trauma might aggravate neurodegenerative symptoms associated with ALS. Furthermore, we found elevated levels of high molecular weight ubiquitinated proteins and p62 in animals expressing ALS-causing genes with TBI, suggesting that TBI may lead to the defects in protein degradation pathways. Finally, we observed that genetic and pharmacological induction of autophagy enhanced the clearance of SGs and promoted survival of flies in vivo. Together, our study demonstrates that trauma can induce SG formation in vivo and might enhance neurodegenerative phenotypes in the fly models of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain Injuries, Traumatic/genetics , Brain/metabolism , Cytoplasmic Granules/metabolism , Drosophila melanogaster/genetics , Frontotemporal Dementia/genetics , Protein Processing, Post-Translational , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Autophagy/genetics , Brain/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cytoplasmic Granules/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Locomotion/physiology , Longevity , Neurons/metabolism , Neurons/pathology , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Trauma Severity Indices , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination
2.
Nat Commun ; 10(1): 5583, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811140

ABSTRACT

Mutations in fused in sarcoma (FUS) lead to amyotrophic lateral sclerosis (ALS) with varying ages of onset, progression and severity. This suggests that unknown genetic factors contribute to disease pathogenesis. Here we show the identification of muscleblind as a novel modifier of FUS-mediated neurodegeneration in vivo. Muscleblind regulates cytoplasmic mislocalization of mutant FUS and subsequent accumulation in stress granules, dendritic morphology and toxicity in mammalian neuronal and human iPSC-derived neurons. Interestingly, genetic modulation of endogenous muscleblind was sufficient to restore survival motor neuron (SMN) protein localization in neurons expressing pathogenic mutations in FUS, suggesting a potential mode of suppression of FUS toxicity. Upregulation of SMN suppressed FUS toxicity in Drosophila and primary cortical neurons, indicating a link between FUS and SMN. Our data provide in vivo evidence that muscleblind is a dominant modifier of FUS-mediated neurodegeneration by regulating FUS-mediated ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Drosophila Proteins/metabolism , Nuclear Proteins/metabolism , RNA-Binding Protein FUS/metabolism , SMN Complex Proteins/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Cytoplasm/metabolism , Cytoplasmic Granules/metabolism , Drosophila/genetics , Drosophila/metabolism , Female , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Motor Neurons/metabolism , Mutation , Phenotype , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/toxicity , SMN Complex Proteins/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL