Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Article in English | MEDLINE | ID: mdl-34426691

ABSTRACT

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Plasticity/immunology , Cellular Microenvironment/immunology , Immunologic Memory/immunology , Animals , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/cytology , Female , Integrin alpha Chains/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology , Transforming Growth Factor beta1/metabolism
2.
Nat Immunol ; 17(11): 1300-1311, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27668799

ABSTRACT

Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.


Subject(s)
Cell Differentiation/immunology , Mucosal-Associated Invariant T Cells/cytology , Mucosal-Associated Invariant T Cells/physiology , Thymus Gland/immunology , Thymus Gland/metabolism , Animals , Antigens, CD1d/genetics , Biomarkers , Cell Differentiation/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunophenotyping , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Male , Mice , Mice, Knockout , MicroRNAs/genetics
3.
Nat Immunol ; 16(3): 258-66, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25642819

ABSTRACT

A central paradigm in αß T cell-mediated immunity is the simultaneous co-recognition of antigens and antigen-presenting molecules by the αß T cell antigen receptor (TCR). CD1a presents a broad repertoire of lipid-based antigens. We found that a prototypical autoreactive TCR bound CD1a when it was presenting a series of permissive endogenous ligands, while other lipid ligands were nonpermissive to TCR binding. The structures of two TCR-CD1a-lipid complexes showed that the TCR docked over the A' roof of CD1a in a manner that precluded direct contact with permissive ligands. Nonpermissive ligands indirectly inhibited TCR binding by disrupting the TCR-CD1a contact zone. The exclusive recognition of CD1a by the TCR represents a previously unknown mechanism whereby αß T cells indirectly sense self antigens that are bound to an antigen-presenting molecule.


Subject(s)
Antigen Presentation/immunology , Antigens, CD1/immunology , Autoantigens/immunology , Lipids/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Jurkat Cells , Ligands , Protein Binding
4.
Nat Immunol ; 14(11): 1137-45, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24076636

ABSTRACT

The T cell repertoire comprises αß and γδ T cell lineages. Although it is established how αß T cell antigen receptors (TCRs) interact with antigen presented by antigen-presenting molecules, this is unknown for γδ TCRs. We describe a population of human Vδ1(+) γδ T cells that exhibit autoreactivity to CD1d and provide a molecular basis for how a γδ TCR binds CD1d-α-galactosylceramide (α-GalCer). The γδ TCR docked orthogonally, over the A' pocket of CD1d, in which the Vδ1-chain, and in particular the germ line-encoded CDR1δ loop, dominated interactions with CD1d. The TCR γ-chain sat peripherally to the interface, with the CDR3γ loop representing the principal determinant for α-GalCer specificity. Accordingly, we provide insight into how a γδ TCR binds specifically to a lipid-loaded antigen-presenting molecule.


Subject(s)
Antigens, CD1d/chemistry , Galactosylceramides/chemistry , Molecular Docking Simulation , Receptors, Antigen, T-Cell, gamma-delta/chemistry , T-Lymphocyte Subsets/immunology , Amino Acid Sequence , Antigens, CD1d/immunology , Binding Sites , Databases, Protein , Galactosylceramides/immunology , Humans , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/cytology
5.
Immunity ; 44(1): 32-45, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26795251

ABSTRACT

A characteristic of mucosal-associated invariant T (MAIT) cells is the expression of TRAV1-2(+) T cell receptors (TCRs) that are activated by riboflavin metabolite-based antigens (Ag) presented by the MHC-I related molecule, MR1. Whether the MR1-restricted T cell repertoire and associated Ag responsiveness extends beyond these cells remains unclear. Here, we describe MR1 autoreactivity and folate-derivative reactivity in a discrete subset of TRAV1-2(+) MAIT cells. This recognition was attributable to CDR3ß loop-mediated effects within a consensus TRAV1-2(+) TCR-MR1-Ag footprint. Furthermore, we have demonstrated differential folate- and riboflavin-derivative reactivity by a diverse population of "atypical" TRAV1-2(-) MR1-restricted T cells. We have shown that TRAV1-2(-) T cells are phenotypically heterogeneous and largely distinct from TRAV1-2(+) MAIT cells. A TRAV1-2(-) TCR docks more centrally on MR1, thereby adopting a markedly different molecular footprint to the TRAV1-2(+) TCR. Accordingly, diversity within the MR1-restricted T cell repertoire leads to differing MR1-restricted Ag specificity.


Subject(s)
Antigen Presentation/immunology , Histocompatibility Antigens Class I/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Autoimmunity/immunology , Crystallography, X-Ray , Flow Cytometry , Histocompatibility Antigens Class I/chemistry , Humans , Immunity, Mucosal/immunology , Jurkat Cells , Minor Histocompatibility Antigens , Receptors, Antigen, T-Cell/chemistry , Surface Plasmon Resonance
6.
Nat Immunol ; 13(9): 857-63, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22820603

ABSTRACT

Natural killer T cells (NKT cells) are divided into type I and type II subsets on the basis of differences in their T cell antigen receptor (TCR) repertoire and CD1d-antigen specificity. Although the mode by which type I NKT cell TCRs recognize CD1d-antigen has been established, how type II NKT cell TCRs engage CD1d-antigen is unknown. Here we provide a basis for how a type II NKT cell TCR, XV19, recognized CD1d-sulfatide. The XV19 TCR bound orthogonally above the A' pocket of CD1d, in contrast to the parallel docking of type I NKT cell TCRs over the F' pocket of CD1d. At the XV19 TCR-CD1d-sulfatide interface, the TCRα and TCRß chains sat centrally on CD1d, where the malleable CDR3 loops dominated interactions with CD1d-sulfatide. Accordingly, we highlight the diverse mechanisms by which NKT cell TCRs can bind CD1d and account for the distinct antigen specificity of type II NKT cells.


Subject(s)
Antigens, CD1d/immunology , Killer Cells, Natural/immunology , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Sulfoglycosphingolipids/immunology , T-Lymphocyte Subsets/immunology , Animals , Antigens, CD1d/chemistry , Crystallization , Killer Cells, Natural/chemistry , Lymphocyte Activation , Mice , Polymerase Chain Reaction , Protein Structure, Quaternary , Receptors, Antigen, T-Cell, alpha-beta/immunology , Sulfoglycosphingolipids/chemistry , Surface Plasmon Resonance , T-Lymphocyte Subsets/chemistry
7.
Immunity ; 43(6): 1101-11, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682984

ABSTRACT

Tissue-resident memory T (Trm) cells contribute to local immune protection in non-lymphoid tissues such as skin and mucosa, but little is known about their transcriptional regulation. Here we showed that CD8(+)CD103(+) Trm cells, independent of circulating memory T cells, were sufficient for protection against infection and described molecular elements that were crucial for their development in skin and lung. We demonstrated that the T-box transcription factors (TFs) Eomes and T-bet combined to control CD8(+)CD103(+) Trm cell formation, such that their coordinate downregulation was crucial for TGF-ß cytokine signaling. TGF-ß signaling, in turn, resulted in reciprocal T-box TF downregulation. However, whereas extinguishment of Eomes was necessary for CD8(+)CD103(+) Trm cell development, residual T-bet expression maintained cell surface interleukin-15 (IL-15) receptor ß-chain (CD122) expression and thus IL-15 responsiveness. These findings indicate that the T-box TFs control the two cytokines, TGF-ß and IL-15, which are pivotal for CD8(+)CD103(+) Trm cell development and survival.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Interleukin-15/immunology , T-Box Domain Proteins/immunology , Transforming Growth Factor beta/immunology , Adoptive Transfer , Animals , Down-Regulation , Flow Cytometry , Gene Expression Regulation/immunology , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Polymerase Chain Reaction , T-Lymphocyte Subsets/immunology
8.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34417291

ABSTRACT

Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αß T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αßTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.


Subject(s)
Antigens, CD1d/metabolism , Arylsulfonates/immunology , Autoantigens/metabolism , Benzofurans/immunology , Lipids/immunology , Lymphocyte Activation/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell/metabolism , Antigen Presentation/immunology , Antigens, CD1d/immunology , Autoantigens/immunology , Humans , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology
9.
Cytometry A ; 103(7): 543-547, 2023 07.
Article in English | MEDLINE | ID: mdl-37183268

ABSTRACT

This 27-color panel was developed to simultaneously measure different T-cell populations (CD4, CD8, γδ T-cells, and MAIT cells) and their subsets (Memory, Th1, Th2, Th17, Tfh, and Treg) along with functional markers associated with their activation status, cytokine production and cytotoxicity. This panel will be useful for both in vivo and in vitro studies evaluating T-cells in the context of human health and disease. This panel is valuable in settings where samples are limited as a large amount of data will be generated using small volumes of blood.


Subject(s)
Mucosal-Associated Invariant T Cells , Th17 Cells , Humans , Flow Cytometry , Phenotype , Cytokines , T-Lymphocyte Subsets
10.
Nat Immunol ; 12(9): 827-33, 2011 Jul 31.
Article in English | MEDLINE | ID: mdl-21804559

ABSTRACT

The most potent foreign antigens for natural killer T cells (NKT cells) are α-linked glycolipids, whereas NKT cell self-reactivity involves weaker recognition of structurally distinct ß-linked glycolipid antigens. Here we provide the mechanism for the autoreactivity of T cell antigen receptors (TCRs) on NKT cells to the mono- and tri-glycosylated ß-linked agonists ß-galactosylceramide (ß-GalCer) and isoglobotrihexosylceramide (iGb3), respectively. In binding these disparate antigens, the NKT cell TCRs docked onto CD1d similarly, achieving this by flattening the conformation of the ß-linked ligands regardless of the size of the glycosyl head group. Unexpectedly, the antigenicity of iGb3 was attributable to its terminal sugar group making compensatory interactions with CD1d. Thus, the NKT cell TCR molds the ß-linked self ligands to resemble the conformation of foreign α-linked ligands, which shows that induced-fit molecular mimicry can underpin the self-reactivity of NKT cell TCRs to ß-linked antigens.


Subject(s)
Antigens, CD1d/immunology , Autoimmunity , Galactosylceramides/immunology , Globosides/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta , Trihexosylceramides/immunology , Amino Acid Sequence , Animals , Antigens, CD1d/chemistry , Antigens, CD1d/metabolism , Binding Sites , Crystallography, X-Ray , Flow Cytometry , Galactosylceramides/chemistry , Galactosylceramides/metabolism , Globosides/chemistry , Globosides/metabolism , Humans , Hybridomas , Kinetics , Mice , Models, Molecular , Molecular Mimicry , Molecular Sequence Data , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Protein Binding/immunology , Protein Engineering/methods , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Structure-Activity Relationship , Surface Plasmon Resonance , Trihexosylceramides/chemistry , Trihexosylceramides/metabolism
11.
Nat Immunol ; 12(7): 616-23, 2011 Jun 12.
Article in English | MEDLINE | ID: mdl-21666690

ABSTRACT

Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.


Subject(s)
Galactosylceramides/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adjuvants, Immunologic/pharmacology , Amino Acid Sequence , Animals , Antigens, Bacterial/immunology , Antigens, CD1d/immunology , Cell Line , Galactosylceramides/pharmacology , Glucuronates/immunology , Humans , Mice , Mice, Mutant Strains , Molecular Sequence Data , Receptors, Antigen, T-Cell, alpha-beta/genetics
12.
Immunol Cell Biol ; 100(10): 805-821, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36218032

ABSTRACT

Age can profoundly affect susceptibility to a broad range of human diseases. Children are more susceptible to some infectious diseases such as diphtheria and pertussis, while in others, such as coronavirus disease 2019 and hepatitis A, they are more protected compared with adults. One explanation is that the composition of the immune system is a major contributing factor to disease susceptibility and severity. While most studies of the human immune system have focused on adults, how the immune system changes after birth remains poorly understood. Here, using high-dimensional spectral flow cytometry and computational methods for data integration, we analyzed more than 50 populations of immune cells in the peripheral blood, generating an immune cell atlas that defines the healthy human immune system from birth up to 75 years of age. We focused our efforts on children under 18 years old, revealing major changes in immune cell populations after birth and in children of schooling age. Specifically, CD4+ T effector memory cells, Vδ2+ gamma delta (γδ)T cells, memory B cells, plasmablasts, CD11c+ B cells and CD16+ CD56bright natural killer (NK) cells peaked in children aged 5-9 years old, whereas frequencies of T helper 1, T helper 17, dendritic cells and CD16+ CD57+ CD56dim NK cells were highest in older children (10-18 years old). The frequency of mucosal-associated invariant T cells was low in the first several years of life and highest in adults between 19 and 30 years old. Late adulthood was associated with fewer mucosal-associated invariant T cells and Vδ2+ γδ T cells but with increased frequencies of memory subsets of B cells, CD4+ and CD8+ T cells and CD57+ NK cells. This human immune cell atlas provides a critical resource to understand changes to the immune system during life and provides a reference for investigating the immune system in the context of human disease. This work may also help guide future therapies that target specific populations of immune cells to protect at-risk populations.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Adult , Child , Humans , Adolescent , Child, Preschool , Young Adult , Longevity , Killer Cells, Natural , Flow Cytometry
13.
Thorax ; 76(9): 942-950, 2021 09.
Article in English | MEDLINE | ID: mdl-33574121

ABSTRACT

Respiratory syncytial virus (RSV) is the most common viral pathogen associated with acute lower respiratory tract infection (LRTI) in children under 5 years of age. Severe RSV disease is associated with the development of chronic respiratory complications such as recurrent wheezing and asthma. A common risk factor for developing severe RSV disease is premature gestation and this is largely due to an immature innate immune system. This increases susceptibility to RSV since the innate immune system is less able to protect against pathogens at a time when adaptive immunity has not fully developed. This review focuses on comparing different aspects of innate immunity between preterm and term infants to better understand why preterm infants are more susceptible to severe RSV disease. Identifying early life innate immune biomarkers associated with the development of severe RSV disease, and understanding how these compare between preterm and term infants, remains a critically important question that would aid the development of interventions to reduce the burden of disease in this vulnerable population.


Subject(s)
Infant, Premature , Respiratory Syncytial Virus Infections/immunology , Disease Susceptibility , Humans , Immunity, Innate , Infant , Infant, Newborn , Severity of Illness Index
15.
Semin Cell Dev Biol ; 84: 42-47, 2018 12.
Article in English | MEDLINE | ID: mdl-29183709

ABSTRACT

Studies of lipid reactive CD1d-restricted T cells have focussed on α-galactosylceramide reactive semi-invariant Type I NKT cells, which influence a broad range of immune responses. Much less is known about other CD1d-restricted T cells with respect to TCR diversity, function, the types of antigens they recognize and how they specifically recognize antigens presented by CD1d. In this review, we reflect on recent literature that highlights unexpected complexity within the pool of CD1d-restricted T cells and emphasize how TCR diversity greatly broadens the scope of antigen recognition.


Subject(s)
Antigen Presentation/immunology , Antigens, CD1d/immunology , Killer Cells, Natural/cytology , Natural Killer T-Cells/cytology , Receptors, Antigen, T-Cell/immunology , Animals , Galactosylceramides/immunology , Humans , Killer Cells, Natural/immunology
16.
Clin Immunol ; 215: 108418, 2020 06.
Article in English | MEDLINE | ID: mdl-32283322

ABSTRACT

Langerhans cell histiocytosis (LCH) lesions contain myeloid lineage 'LCH' cells. Regulatory T cells (Tregs) are also enriched within lesions, although their role in LCH pathogenesis is unknown. LCH cells are thought to produce the transforming growth factor beta (TGF-ß) within lesions, however whether Tregs contribute is unestablished. Using flow cytometry, we analyzed relative frequencies of live Tregs from LCH patients and identified CD56 expression and TGF-ß production by lesion Tregs. While CD56+ Tregs were enriched in lesions, overall CD56+ T cells were reduced in the blood from active LCH patients compared to non-active disease patients, and there was a negative correlation between CD8+CD56+ T cells and Tregs. We propose that inducing a Treg phenotype in T cells such as CD56+ T cells may be a mechanism by which LCH cells divert inflammatory T cell responses. Thus, Tregs within LCH lesions are likely an important component in LCH pathogenesis.


Subject(s)
CD56 Antigen/immunology , Forkhead Transcription Factors/immunology , Histiocytosis, Langerhans-Cell/immunology , Langerhans Cells/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Female , Humans , Infant , Inflammation/immunology , Male , Middle Aged , Transforming Growth Factor beta/immunology
17.
Eur J Immunol ; 49(5): 737-746, 2019 05.
Article in English | MEDLINE | ID: mdl-30854633

ABSTRACT

Lyme disease is a common multisystem disease caused by infection with a tick-transmitted spirochete, Borrelia burgdorferi and related Borrelia species. The monoglycosylated diacylglycerol known as B. burgdorferi glycolipid II (BbGL-II) is a major target of antibodies in sera from infected individuals. Here, we show that CD1b presents BbGL-II to human T cells and that the TCR mediates the recognition. However, we did not detect increased frequency of CD1b-BbGL-II binding T cells in the peripheral blood of Lyme disease patients compared to controls. Unexpectedly, mapping the T cell specificity for BbGL-II-like molecules using tetramers and activation assays revealed a concomitant response to CD1b-expressing APCs in absence of BbGL-II. Further, among all major classes of self-lipid tested, BbGL-II responsive TCRs show strong cross-reactivity to diacylglycerol, a self-lipid antigen with structural similarities to BbGL-II. Extending prior work on MHC and CD1b, CD1c, and CD1d proteins, this study provides evidence for cross-reactive CD1b-restricted T cell responses to bacterial and self-antigens, and identifies chemically defined targets for future discovery of self and foreign antigen cross-reactive T cells.


Subject(s)
Antigen Presentation/immunology , Antigens, CD1/metabolism , Borrelia burgdorferi/immunology , Lyme Disease/immunology , Lyme Disease/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antigens, Bacterial/immunology , Autoantigens/immunology , Cross Reactions/immunology , Diglycerides/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Lyme Disease/microbiology , Lymphocyte Activation/immunology , Protein Binding , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
18.
Allergy ; 75(10): 2477-2490, 2020 10.
Article in English | MEDLINE | ID: mdl-32181878

ABSTRACT

Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.


Subject(s)
Hypersensitivity , Mucosal-Associated Invariant T Cells , Allergens , Antigen Presentation , Histocompatibility Antigens Class I , Humans , Minor Histocompatibility Antigens
19.
Immunity ; 34(3): 315-26, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21376640

ABSTRACT

The antigen receptor for natural killer T cells (NKT TCR) binds CD1d-restricted microbial and self-lipid antigens, although the molecular basis of self-CD1d recognition is unclear. Here, we have characterized NKT TCR recognition of CD1d molecules loaded with natural self-antigens (Ags) and report the 2.3 Å resolution structure of an autoreactive NKT TCR-phosphatidylinositol-CD1d complex. NKT TCR recognition of self- and foreign antigens was underpinned by a similar mode of germline-encoded recognition of CD1d. However, NKT TCR autoreactivity is mediated by unique sequences within the non-germline-encoded CDR3ß loop encoding for a hydrophobic motif that promotes self-association with CD1d. Accordingly, NKT cell autoreactivity may arise from the inherent affinity of the interaction between CD1d and the NKT TCR, resulting in the recognition of a broad range of CD1d-restricted self-antigens. This demonstrates that multiple self-antigens can be recognized in a similar manner by autoreactive NKT TCRs.


Subject(s)
Antigens, CD1d/immunology , Autoantigens , Natural Killer T-Cells/immunology , Animals , Crystallography, X-Ray , Mice , Mice, Inbred C57BL , Models, Molecular , Multiprotein Complexes , Receptors, Natural Killer Cell/immunology
20.
Immunity ; 34(3): 327-39, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21376639

ABSTRACT

Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.


Subject(s)
Antigens, CD1d/immunology , Epitopes , Natural Killer T-Cells/immunology , Animals , Carbohydrate Sequence , Cell Line , Cell Proliferation , Glycolipids/immunology , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Sequence Data , Natural Killer T-Cells/cytology , Receptors, Natural Killer Cell/immunology
SELECTION OF CITATIONS
SEARCH DETAIL