Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Rev Argent Microbiol ; 55(2): 120-128, 2023.
Article in English | MEDLINE | ID: mdl-36682905

ABSTRACT

The high load of agrochemicals and antibiotics present in agricultural aquatic environments represents a risk for wildlife. Since enteric bacteria, which play a key role in the physiological functioning of their hosts, are sensitive to a wide variety of pollutants, their study allows to evaluate the health of organisms. This study aimed to evaluate the effects of commercial formulations of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP), individually and in mixture, on the bacterial diversity of the intestinal content of common toad (Rhinella arenarum) tadpoles. The diversity of cultivable fast-growing bacteria with low nutritional requirements was evaluated using classic microbiological tests and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification. Bacterial diversity varied among treatments. Taxa diversity increased in the GBH-treated group but decreased in the CIP-treated group. Remarkably, Yersinia spp. and Proteus spp. were only found in the GBH-treated group. The prevalence of Klebsiella spp. and Pseudomonas spp. decreased in the intestinal microbiota of the GBH-CIP-treated group. To our knowledge, this is the first report on the alteration of cultivable enteric bacteria of autochthonous tadpoles due to two pollutants of emerging concern. Our results demonstrate that R. arenarum tadpoles can be used as non-conventional model organisms for environmental pollution monitoring. Our preliminary findings would contribute to understanding how the presence of GBH and CIP in freshwaters may represent a threat to wildlife and human health by causing enteric dysbiosis of part of the bacterial community.


Subject(s)
Gastrointestinal Microbiome , Herbicides , Animals , Humans , Larva , Ciprofloxacin/adverse effects , Herbicides/pharmacology , Enterobacteriaceae , Anti-Bacterial Agents/adverse effects , Glyphosate
2.
J Environ Sci Health B ; 57(9): 687-696, 2022.
Article in English | MEDLINE | ID: mdl-35852372

ABSTRACT

The aim of the present study was to evaluate the response in larvae of the anuran species Rhinella arenarum, Rhinella dorbignyi and Odontophrynus americanus exposed to glyphosate (GLY, 2.5 mg L-1), cypermethrin (CYP, 0.013 mg L-1), chlorpyrifos (CP, 0.1 mg L-1) and glufosinate-ammonium (GLU, 15 mg L-1) using two behavioral endpoints: mean speed (MS) and total distance moved (TD); and two enzymatic biomarkers: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In order to assess a global response and to determine the most sensitive species, an integrated biomarker response (IBR) index was calculated. Behavioral biomarkers were tested at 1 and 60 min, and the enzymes at 60 min after exposure. The results showed that: (1) there were statistical differences between species in a series of responses in swimming behavior, and cholinesterase activities within the first-hour of exposure to CYP, GLY, and CP at environmentally relevant concentrations (ERC); (2) IBR determined that Rhinella species were the most sensitive of the species tested and (3) IBR provided a comprehensive assessment of the health status of species exposed to ERC of a wide variety of agrochemicals globally and frequently used.


Subject(s)
Chlorpyrifos , Water Pollutants, Chemical , Acetylcholinesterase , Agrochemicals , Aminobutyrates , Animals , Anura , Biomarkers , Bufonidae , Butyrylcholinesterase , Chlorpyrifos/toxicity , Glycine/analogs & derivatives , Larva , Pyrethrins , Glyphosate
3.
Environ Monit Assess ; 194(10): 718, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050604

ABSTRACT

Microplastics (MPs) are critical emerging pollutants around the world. There is a growing interest in the effects of MP ingestion, non-digestion, and toxicity on aquatic organisms. Amphibian tadpoles are the vertebrate group that has received the least attention regarding this issue. The aim of the present study was to determine the ingestion of polyethylene MPs by Scinax squalirostris tadpoles by atomic force microscopy (AFM) and to evaluate the activities of carboxylesterase (CbE, using 4-naphthyl butyrate-NB-, and 1-naphthyl acetate -NA- as substrates) and alkaline phosphatase (ALP) under MP exposure. Enzyme activities were analyzed spectrophotometrically at 2 and 10 days of exposure. Tadpoles were exposed to two different treatments during 10 days: a negative control (CO, dechlorinated water) and MP (60 mg L-1). AFM images of the digestive contents of tadpoles revealed the presence of MPs. After 10 days of MP exposure, CbE (NB) activity was significantly higher and CbE (NA) activity was significantly lower in MP treatments than in controls. ALP activity decreased in MP treatments after 2 and 10 days of exposure. The detection of MP particles in the intestinal contents and the effects on metabolic enzymes in a common frog species evidenced the potential health risk of MP to aquatic vertebrates. Thus, the differential response in enzymes and substrates demonstrate the need for considering the complex effects of contaminants and nutrients on ecosystems for ecotoxicological risk characterization.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Anura , Carboxylesterase/pharmacology , Ecosystem , Environmental Monitoring , Larva , Phosphoric Monoester Hydrolases/pharmacology , Plastics , Water Pollutants, Chemical/toxicity
4.
J Environ Sci Health B ; 56(1): 41-53, 2021.
Article in English | MEDLINE | ID: mdl-33112724

ABSTRACT

Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.


Subject(s)
Abnormalities, Drug-Induced/veterinary , Bufo arenarum/growth & development , Dexamethasone/toxicity , Glucocorticoids/toxicity , Water Pollutants, Chemical/toxicity , Animals , Ecotoxicology , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Larva/drug effects , Lethal Dose 50
5.
Bull Environ Contam Toxicol ; 104(1): 35-40, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31740980

ABSTRACT

Dimethoate (D) are among the most commonly used organophosphates insecticides in the world. To evaluate the toxicity of two D formulations were selected as test organisms tadpoles of Rhinella arenarum. This toad species has an extensive neotropical distribution and is easy to handle and acclimate to laboratory conditions. The tadpoles were exposed in an acute assay for 48 h to D soluble concentrates (DSC) and emulsifiable concentrates (DEC). The 48 h-LC50 (95% confidence limits) value of DSC was 57.46 mg L-1 (40.52-81.43) and to DEC was 12.76 mg L-1 (10.39-15.68). These differences in toxicity were statistically significant (p < 0.05). In both formulations, acetylcholinesterase), carboxylesterase, and glutathione-S-transferases enzyme activities varied significantly respect to those of control group (p < 0.05). The DEC formulation was the most toxic. These results would allow the assessment and characterization of potential ecological risks following the application of those formulations.


Subject(s)
Bufo arenarum , Dimethoate/toxicity , Insecticides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Dimethoate/chemistry , Insecticides/chemistry , Larva/enzymology , Lethal Dose 50 , Toxicity Tests , Water Pollutants, Chemical/chemistry
6.
Environ Res ; 136: 205-12, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25460638

ABSTRACT

The effects of commercial formulations of Bacillus thuringiensisvar.israelensis (Bti) on non-target organisms are still a matter of debate; in amphibians, the risks of Bti are little known. To evaluate the toxicity of a commercial liquid (aqueous suspension, AS) formulation of Bti (Introban(®)) on Leptodactylus latrans tadpoles, including median lethal concentration (LC50) and no-and lowest-observed-effect concentrations (NOEC and LOEC, respectively), as well as the possible effects of Bti on oxidative responses, erythrocytes genotoxicity, and histology of the intestines. In the laboratory, tadpoles were exposed to nominal concentrations of 0 (control), 2.5, 5, 10, 20 and 40 mg/L of formulated Bti-AS. Glutathione S-transferase (GST) and catalase (CAT) activities, as well as formation of erythrocyte nuclear abnormalities (ENAs), and histological effect were measured in tadpoles displaying survival rates >85%. L. latrans tadpoles were sensitive to exposure to Bti-AS, reaching 100% mortality after 48 h of exposure at the highest concentration. Bti-AS induced GST and CAT enzymes and genotoxicity (erythrocyte's nuclear abnormalities), and caused intestine's histopathology. Our results demonstrate that toxicity of Bti-AS is dose-dependent for L. latrans tadpoles and that sublethal exposure alters enzymes of oxidative stress, induces genotoxicity, and causes intestine damage. Further research is needed to evaluate the ecotoxicological risk of the massive use of Bti formulations on amphibian populations that commonly used suburban wastewater or urban waterbodies to reproduce and where this biopesticide is frequently applied.


Subject(s)
Anura/growth & development , Bacillus thuringiensis , Larva/drug effects , Animals , Oxidation-Reduction , Water
7.
Toxics ; 12(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38535909

ABSTRACT

The aim of this study was to evaluate the acute lethality and chronic sublethal effects of lithium (Li) on Rhinella arenarum tadpoles as model organisms. First a 96 h toxicity assay was performed by exposing tadpoles to Li concentrations from 44.08 to 412.5 mg L-1 to estimate the mortality, and lethal and sublethal effects. Another bioassay was carried out by exposing tadpoles to two environmentally relevant Li concentrations (2.5 and 20 mg L-1) for one and two weeks. The sublethal effects of Li on tadpoles were evaluated by analyzing biochemical, genotoxic, and physiological biomarkers. The mortality in Li-exposed tadpoles increased over time. The median lethal concentration (LC50) ranged from 319.52 (281.21-363.05) mg L-1 at 48 h to 66.92 (52.76-84.89) mg L-1 at 96 h. Exposure to Li at 2.5 and 20 mg L-1 induced alterations in enzymes related to detoxification, antioxidant, and hepatic mechanisms, endocrine disruption of thyroid hormones, genotoxicity, and effects on the physiology of the heart and gastrointestinal systems. Tadpoles exposed to the highest concentration in the chronic bioassay (20 mg L-1 Li), which is the concentration commonly recorded in Li mining sites, showed significant mortality after one week of exposure. These results warn about the high ecotoxicological risk of Li as a contaminant of emerging concern for amphibians.

8.
Water Environ Res ; 96(3): e11010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433361

ABSTRACT

The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.


Subject(s)
Turtles , Animals , Environmental Biomarkers , Wastewater , Ecosystem , Rivers , Amphibians , Environmental Health , Water , South America
9.
Ecotoxicol Environ Saf ; 98: 142-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24080097

ABSTRACT

Sediments are important elements of aquatic ecosystems and in general sediments accumulate diverse toxic substances. Amphibians potentially have a greater risk of exposure to contaminants in sediments, and the test of sediments provides first lines of evidences. Sediment outdoor microcosm experiments were conducted to analyze biological endpoints (survival, development, growth, and morphological and organ malformation), enzyme activity (butyrylcholinesterase, BChE; glutathione-S-transferase, GST; and catalase, CAT) and blood biomarkers in veined treefrog Trachycephalus typhonius tadpoles, a widespread neotropical species. Hatching (stage 23) of T. thyphonius was exposed until they reached metamorphosis (stage 46). Sediment tests were performed and four different treatments were used: three ponds (LTPA, ISP, and SSP) influenced by industrial and agricultural activities and a reference treatment from a forest (RFS). Physical and chemical variables and concentration of nutrients, pesticide residues, and metals were determined. One treatment was metal-rich (LPTA) and two were nutrient-rich (ISP and SSP). Sediment treatments had no significant effect on survival; in contrast they had significant sublethal effects on T. typhonius larval development and growth rates, and affected overall size and shape at stage 38. Principally, in LPTA animals were significantly larger than in RFS, exhibiting swollen bodies, tail muscles and tail fin. In addition, metamorphs from LPTA, ISP, and SSP were smaller and showed signs of emaciation by the end of the experiment. Statistical comparisons showed that the proportions of each type of morphological abnormalities (swollen bodies and diamond shape, gut uncoiling, diverted gut, stiff tails, polydactyly, and visceral and hindlimb hemorrhaging) were significantly greater in metal- and nutrient-rich sediment treatments. Moreover, activities of BChE, GST and CAT, as well as and presence of micronuclei, immature, mitotic, anucleated erythrocytes varied significantly among treatments. Our biological effects-based sediment study highlights the use of different biological endpoints and biomarkers on anuran larvae at sites where pond sediment is risky and sediment management should be considered. Finally, the information of those biological endpoints and biomarkers would be useful as a management tool to decide if there are sufficient exposures of tadpoles to suspected pollutants on sediment.


Subject(s)
Anura/growth & development , Anura/metabolism , Geologic Sediments/chemistry , Water Pollutants/adverse effects , Animals , Anura/abnormalities , Argentina , Biomarkers/analysis , Butyrylcholinesterase/analysis , Catalase/analysis , Glutathione Transferase/analysis , Larva/drug effects , Larva/growth & development , Metamorphosis, Biological/drug effects , Ponds
10.
Ecotoxicology ; 22(7): 1165-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23868463

ABSTRACT

In this study, amphibian tadpoles of Hypsiboas pulchellus were exposed to herbicide Liberty®, which contains glufosinate ammonium (GLA), for 48 h to the following concentrations: 0 (control), 3.55, 4.74, 6.32, 8.43, 11.25, 15, 20, 26.6, and 35.5 mg GLA L(-1). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, as well as swimming capabilities (swimming speed and mean distance) were measured in tadpoles whose concentrations displayed survival rates > 85 %. Our results reveal that sublethal concentrations of GLA significantly inhibited both AChE and BChE activities in tadpoles with respect to the control, showing a concentration-dependent inhibitory effect. The highest inhibition percentages of AChE (50.86%) and BChE (53.02%) were registered in tadpoles exposed to 15 mg GLA L(-1). At this concentration, a significant increase of the swimming speed and mean distance were found in exposed tadpoles with respect to the control, as well as a negative and significant correlation between swimming speed and BChE activity, thus suggesting that this enzyme inhibition is related to an increase in swimming speed. Therefore, exposure of tadpoles to GLA in the wild at concentrations similar to those tested here may have adverse consequences at population level because neurotransmission and swimming performance are essential for tadpole performance and survival.


Subject(s)
Acetylcholinesterase/metabolism , Aminobutyrates/toxicity , Anura/metabolism , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/toxicity , Dose-Response Relationship, Drug , Environmental Monitoring , Larva/drug effects , Swimming/physiology , Synaptic Transmission/drug effects , Toxicity Tests, Acute
11.
J Environ Sci Health B ; 48(3): 163-70, 2013.
Article in English | MEDLINE | ID: mdl-23356336

ABSTRACT

The H(2)O(2)/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M(1,) M(2), and M(3) following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H(2)O(2). Subsamples of M(1), M(2), and M(3) were then used to create samples M(1,E), M(2,E) and M(3,E) in which the H(2)O(2) had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M(1,E), which was collected early in the photodegradation process, caused 52% inhibition, while M(3,E), which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M(2), M(3), and in M(1,E), M(2,E) and M(3,E). The lowest percentages of enzymatic inhibition were observed in samples without removal of H(2)O(2): 13.96% (AChE) and 16% (BChE) for M(2), and 24.12% (AChE) and 13.83% (BChE) for M(3). These results show the efficiency of the H(2)O(2)/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M(2) (11 ± 1 mg a.e. L(-1) glyphosate and 11 ± 1 mg L(-1) H(2)O(2)) could be used as a final point for glyphosate treatment with the H(2)O(2)/UV process.


Subject(s)
Aliivibrio fischeri/drug effects , Bufo arenarum/growth & development , Environmental Monitoring/methods , Environmental Restoration and Remediation/methods , Glycine/analogs & derivatives , Herbicides/chemistry , Larva/drug effects , Animals , Biological Assay , Glycine/chemistry , Glycine/toxicity , Herbicides/toxicity , Hydrogen Peroxide/chemistry , Larva/growth & development , Oxidation-Reduction/radiation effects , Photolysis , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Glyphosate
12.
Sci Total Environ ; 870: 162019, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36740068

ABSTRACT

Muscle and viscera (gills-liver) of the fish Prochilodus lineatus were obtained from four sites of lower course of Salado river and one site at Santa Fe river near to its confluence with Salado river from Santa Fe (Argentina) between December 2021 and February 2022. Sediment samples were also obtained from the same sites. All samples were analyzed for pesticide residues following the QuEChERS method to quantify 136 compounds by UHPLC-ESI-MS/MS and GC-EI-MS/MS. Overall, muscle fish tissue showed very high concentrations (maximum concentrations detected) of the insecticide cypermethrin (204 µg/kg), polar herbicides (glyphosate; 187 µg/kg and its degradation product (aminomethylphosphonic acid) AMPA; 3116 µg/kg, and glufosinate-ammonium; 677 µg/kg), and the fungicide pyraclostrobin (50 µg/kg). In viscera samples, high values of cypermethrin (506 µg/kg), chlorpyrifos (78 µg/kg), and lambdacyhalothrin (73 µg/kg) were the main pesticides found. Mean residues concentrations detected among sites were not significantly different neither in muscle nor viscera of P. lineatus in most of the cases. Exceptionally, the southernmost studied site of the Lower Salado river showed significant differences in concentration of residues found in muscle, due to high concentrations of glyphosate and glufosinate-amonium (KW = 11.879 and KW = 13.013, respectively, P < 0.05). Other norther Lower Salado river site showed significant higher AMPA concentration in fish viscera than in the rest of the studied sites (KW = 12.86 P < 0.05). Some sediment samples showed low levels of herbicides such as glyphosate (24 µg/kg) and fungicides. However, the world highest levels of polar herbicides were recorded in fish muscle. The results of this study highlight the need for periodic monitoring due to the high concentration of pesticides and its potential risk in a very important commercial freshwater fish from Argentina, which is consumed locally and exported to other countries for human consumption.


Subject(s)
Characiformes , Herbicides , Pesticide Residues , Pesticides , Water Pollutants, Chemical , Animals , Humans , Pesticide Residues/analysis , Herbicides/analysis , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analysis , Tandem Mass Spectrometry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , South America
13.
Water Environ Res ; 95(6): e10899, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37255341

ABSTRACT

Amphibians are subject to several stressors in the aquatic and terrestrial environments, and human activities have profoundly impacted this vertebrate group. The aim of the present study was to analyze physicochemical parameters, metals and pesticide residues, and the toxicity of water and sediment samples from an environment with high agricultural activity (S1: Salto stream; S2: drainage channel downstream from S1) by means of bioassays using Rhinella arenarum (Amphibia: Anura) larvae. Metals and pesticides were analyzed in water and sediment samples by fluorescence spectrometer of X-ray by total reflection and ultra-high-performance liquid chromatography-MS/MS, respectively. For lethality bioassays, 10 larvae (in triplicate) were exposed for 504 h to water and sediment samples. Also, 50 larvae were exposed for 96 h (in triplicate) to water and sediment samples for the evaluation of biomarkers of neurotoxicity, oxidative stress, and genotoxicity. Twenty-six different pesticides (mainly herbicides) were detected in both sites, and Cu, Zn, and Pb exceeded the limit for protection of aquatic life. Lethality was observed in larvae exposed to water and sediment samples from both sites at chronic exposure. Oxidative stress was observed in larvae exposed to both sites. In larvae exposed to samples from S1, alterations in the neurotoxicity biomarkers were observed. These results alert about the degradation of the sites and highlight the need to monitor and control the use of pesticides. PRACTITIONER POINTS: Twenty-six pesticides were detected in water and sediment from Salto stream basin. Significant mortality was observed in larvae exposed to samples from all sites. Sublethal effects were observed mainly in larvae exposed to samples from Salto stream. The degraded quality can be associated with the agricultural activities of the area.


Subject(s)
Pesticides , Water Pollutants, Chemical , Humans , Animals , Water , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Pesticides/analysis , Biomarkers , Amphibians/metabolism , Environmental Monitoring/methods , Geologic Sediments/chemistry
14.
J Zoo Wildl Med ; 43(3): 579-84, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23082522

ABSTRACT

Trombiculid mites are known to parasitize a variety of amphibian species; however, few comparisons of mite parasitism among sites have been made. Here, Hannemania sp. parasitism in frogs (Leptodactylus chaquensis) inhabiting agroecosystems from mideastern Argentina was described. A total of 40 adult frogs (22 females and 18 males) were analyzed to detect ectoparasite Hannemania spp. larvae. Prevalence and mean abundance of Hannemania sp. were consistently higher in frogs from the agroecosystems (rice and soybean fields) than from two reference sites. Leptodactylus chaquensis might be considered an important host species of Hannemania sp., particularly in agricultural areas.


Subject(s)
Anura/parasitology , Glycine max , Mite Infestations/veterinary , Oryza , Trombiculidae , Agriculture , Animals , Argentina/epidemiology , Ecosystem , Female , Male , Mite Infestations/epidemiology , Prevalence , Trees , Trombiculidae/ultrastructure
15.
Chemosphere ; 301: 134631, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35443209

ABSTRACT

Antiretrovirals are pharmaceuticals used in the treatment of the human immunodeficiency virus; they are contaminants of emerging concern that have received considerable attention in recent decades due to their potential negative environmental effects. Data on the bioaccumulation and possible environmental risks posed by these drugs to aquatic organisms are very scarce. Therefore, the aim of this study was to evaluate the bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles subjected to acute static toxicity tests (96 h) at environmentally relevant concentrations. The analytical procedure consisted of the development and optimization of a method involving ultra-high performance liquid chromatography with tandem mass spectrometry detection. The instrumental conditions, optimized by design of experiments using the response surface methodology, yielded limits of detection of 0.3 µg L-1 for abacavir and 0.9 µg L-1 for efavirenz; and limits of quantification of 1.9 µg L-1 for abacavir and 5.6 µg L-1 for efavirenz. Subsequently, the bioaccumulation of the pharmaceutical drugs in tadpoles was evaluated at three exposure concentrations. Efavirenz displayed the highest bioaccumulation levels. This study shows the bioaccumulation potential of abacavir and efavirenz in amphibian tadpoles at exposure concentrations similar to those already detected in the environment, indicating an ecological risk for R. arenarum and probably other aquatic organisms exposed to these drugs in water bodies.


Subject(s)
Water Pollutants, Chemical , Alkynes , Animals , Benzoxazines , Bioaccumulation , Bufo arenarum , Cyclopropanes , Dideoxynucleosides , Humans , Larva , Water Pollutants, Chemical/analysis
16.
Aquat Toxicol ; 253: 106342, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36327688

ABSTRACT

The lower Salado River basin receive agricultural, industrial and domestic waste water. So, the aim was to evaluate the quality of three sampling sites that belong to the Salado River basin (S1: Cululú stream; S2: Salado River, at Esperanza City, S3: Salado River at Santo Tomé City) based on physicochemical parameters, metals and pesticides analyses and ecotoxicity on Rhinella arenarum larvae. R. arenarum larvae (Gosner Stage -GS- 25) were chronically exposed (504h) to complex matrixes of surface water and sediment samples of each site for the determination of the survival rate. Biomarkers of oxidative stress, neurotoxicity and genotoxicity were analyzed in R. arenarum larvae (GS. 25) after exposure (96h) to the complex matrix of water and sediment. The water quality index showed a marginal quality for all sites, influenced mainly by low dissolved oxygen, high total suspended solid, phosphate, nitrite, conductivity, Pb, Cr and Cu levels. Metal concentrations were higher in sediment than in water samples (˜34-35000 times). In total, thirty different pesticides were detected in all water and sediment samples, S1 presented the greatest variety (26). Glyphosate and AMPA were detected in sediments from all sites, being higher in S3. N,N-Diethyl-meta-toluamide (DEET) and atrazine were detected in all water samples. Greatest mortality was observed in larvae exposed to samples from S1 from 288h (43.3%), reaching a maximum value of 50% at 408h. Oxidative stress and genotoxicity were observed in larvae exposed to S1 and S3 matrix samples. Neurotoxicity was observed in larvae exposed to all matrix samples. The integrated biomarker response index showed that larvae exposed to S1 and S3 were the most affected. According to the physicochemical data and the ecotoxicity assessment, this important river basin is significantly degraded and may represent a risk to aquatic biota, especially for R. arenarum larvae.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Rivers , Larva , Argentina , Water Pollutants, Chemical/toxicity , Pesticides/analysis , Bufo arenarum , Metals/analysis , Environmental Monitoring , Geologic Sediments/analysis
17.
Sci Total Environ ; 804: 150177, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34520929

ABSTRACT

The effects of glyphosate (GLY)-based and glufosinate ammonium (GA)-based herbicides (GBH and GABH, respectively) and polyethylene microplastic particles (PEMPs) on Scinax squalirostris tadpoles were assessed. Tadpoles were exposed to nominal concentrations of both herbicides (from 1.56 to 100 mg L-1) and PEMPs (60 mg L-1), either alone or in combination, and toxicity evaluated at 48 h. Acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione-S-transferase (GST) activities were analyzed at the three lowest concentrations (1.56, 3.12 and 6.25 mg L-1, survival rates >85%) of both herbicides alone and with PEMPs. Additionally, the thermochemistry of the interactions between the herbicides and polyethylene (PE) was analyzed by Density Functional Theory (DFT). The median-lethal concentration (LC50) was 43.53 mg L-1 for GBH, 38.56 mg L-1 for GBH + PEMPs, 7.69 for GABH, and 6.25 mg L-1 for GABH+PEMPs. The PEMP treatment increased GST but decreased CbE activity, whereas GBH and GABH treatments increased GST but decreased AChE activity. In general, the mixture of herbicides with PEMPs increased the effect observed in the individual treatments: the highest concentration of GBH + PEMPs increased GST activity, whereas GABH+PEMP treatments decreased both AChE and CbE activities. DFT analysis revealed spontaneous interactions between the herbicides and PE, leading to the formation of bonds at the herbicide-PE interface, significantly stronger for GA than for GLY. The experimental and theoretical findings of our study indicate that these interactions may lead to an increase in toxicity when pollutants are together, meaning potential environmental risk of these combinations, especially in the case of GA.


Subject(s)
Herbicides , Water Pollutants, Chemical , Acetylcholinesterase , Aminobutyrates , Animals , Anura , Crops, Agricultural , Glycine/analogs & derivatives , Herbicides/toxicity , Larva , Microplastics , Plants, Genetically Modified , Plastics , Water Pollutants, Chemical/toxicity , Glyphosate
18.
Chemosphere ; 309(Pt 1): 136554, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36174726

ABSTRACT

The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Larva , Acetylcholinesterase , Butyrylcholinesterase , Catalase , Ecosystem , Thyroxine , Water Pollutants, Chemical/toxicity , Herbicides/toxicity , Bufo arenarum , Glutathione Transferase , Biomarkers , Glyphosate
19.
Ecotoxicology ; 20(1): 274-82, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21113795

ABSTRACT

Activity of B-esterases (BChE: butyrylcholinesterase and CbE: carboxylesterase using two model substrates: α-naphthyl acetate and 4-nitrophenyl valerate) in a native frog, Leptodactylus chaquensis from rice fields (RF1: methamidophos and RF2: cypermethrin and endosulfan sprayed by aircraft) and non-contaminated area (pristine forest) was measured. The ability of pyridine-2-aldoxime methochloride (2-PAM) to reactivate BChE levels was also explored. In addition, changes in blood cell morphology and parasite infection were determined. Mean values of plasma BChE activities were lower in samples from the two rice fields than in those from the reference site. CbE (4-nitrophenyl valerate) levels varied in the three sites studied, being highest in RF1. Frog plasma from RF1 showed positive reactivation of BChE activity after incubation with 2-PAM. Blood parameters of frogs from RF2 revealed morphological alterations (anisochromasia and immature erythrocytes frequency). Moreover, a major infection of protozoan Trypanosoma sp. in individuals from the two rice fields was detected. We suggest that integrated use of several biomarkers (BChE and CBEs, chemical reactivation of plasma with 2-PAM, and blood cell parameters) may be a promising procedure for use in biomonitoring programmes to diagnose pesticide exposure of wild populations of this frog and other native anuran species in Argentina.


Subject(s)
Anura/metabolism , Blood Cells/drug effects , Carboxylesterase/blood , Ecosystem , Insecticides/toxicity , Organothiophosphorus Compounds/toxicity , Oryza , Pyrethrins/toxicity , Animals , Anura/blood , Anura/parasitology , Argentina , Blood Cells/pathology , Environmental Monitoring , Enzyme Activation/drug effects , Epidemiological Monitoring , Male , Stress, Physiological , Trypanosoma/physiology , Trypanosomiasis/epidemiology , Trypanosomiasis/veterinary
20.
Arch Environ Contam Toxicol ; 60(4): 681-9, 2011 May.
Article in English | MEDLINE | ID: mdl-20669015

ABSTRACT

In this study, amphibian tadpoles Rhinella arenarum were exposed to different concentrations of Roundup Ultra-Max (ULT), Infosato (INF), Glifoglex, and C-K YUYOS FAV. Tadpoles were exposed to these commercial formulations with glyphosate (CF-GLY) at the following concentrations (acid equivalent [ae]): 0 (control), 1.85, 3.75, 7.5, 15, 30, 60, 120, and 240 mg ae/L for 6-48 h (short-term). Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CbE), and glutathione S-transferase (GST) activities were measured among tadpoles sampled from those treatments that displayed survival rates >85%. Forty-eight-hour LC(50) for R. arenarum tadpoles exposed to CF-GLY in the static tests ranged from ULT = 2.42 to FAV = 77.52 mg ae/L. For all CF-GLY, the LC(50) values stabilized at 24 h of exposure. Tadpoles exposed to all CF-GLY concentrations at 48 h showed decreases in the activities of AChE (control = 17.50 ± 2.23 nmol/min/mg/protein; maximum inhibition INF 30 mg ae/L, 71.52%), BChE (control = 6.31 ± 0.86 nmol/min/mg/protein; maximum inhibition INF 15 mg ae/L, 78.84%), CbE (control = 4.39 ± 0.46 nmol/min/mg/protein; maximum inhibition INF 15 mg ae/L, 81.18%), and GST (control = 4.86 ± 0.49 nmol/min/mg/protein; maximum inhibition INF 1.87 mg ae/L, 86.12%). These results indicate that CF-GLY produce a wide range of toxicities and that all enzymatic parameters tested may be good early indicators of herbicide contamination in R. arenarum tadpoles.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Environmental Monitoring/methods , Glutathione Transferase/antagonists & inhibitors , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Bufonidae , Larva/drug effects , Larva/enzymology , Lethal Dose 50
SELECTION OF CITATIONS
SEARCH DETAIL