ABSTRACT
The cell division cycle associated 8 (CDCA8) is a crucial component of the chromosome passenger complex (CPC). It has been implicated in the regulation of cell dynamic localization during mitosis. However, its role in hepatocellular carcinoma (HCC) is not clearly known. In this study, data of 374 patients with HCC were retrieved from the Cancer Genome Atlas (TCGA) database. Pan analysis of Gene Expression Profiling Interactive Analysis (GEPIA) database was performed to profile the mRNA expression of CDCA8 in HCC. Then, the Kaplan-Meier plotter database was analysed to determine the prognostic value of CDCA8 in HCC. In addition, samples of tumour and adjacent normal tissues were collected from 88 HCC patients to perform immunohistochemistry (IHC), reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. The results obtained from bioinformatic analyses were validated through CCK-8 assay, EdU assay, colony formation assay, cell cycle assays and Western blotting experiments. Analysis of the Kaplan-Meier plotter database showed that high expression of CDCA8 may lead to poor overall survival (OS, p = 4.06e-05) in patients with HCC. For the 88 patients with HCC, we found that stages and grades appeared to be strongly linked with CDCA8 expression. Furthermore, the high expression of CDCA8 was found to be correlated with poor OS (p = 0.0054) and progression-free survival (PFS, p = 0.0009). In vitro experiments revealed that inhibition of CDCA8 slowed cell proliferation and blocked the cell cycle at the G0/G1 phase. In vivo experiments demonstrated that inhibition of CDCA8 inhibited tumour growth. Finally, blockade of CDCA8 reduced the expression levels of cyclin A2, cyclin D1, CDK4, CDK6, Ki67 and PCNA. And, there is an interaction between CDCA8 and E2F1. In conclusion, this research demonstrates that CDCA8 may serve as a biomarker for early diagnosis and prognosis prediction of HCC patients. In addition, CDCA8 could be an effective therapeutic target in HCC.
Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/etiology , Cell Cycle Proteins/genetics , Cell Cycle/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/etiology , Adult , Aged , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Male , Mice , Middle Aged , Prognosis , Signal Transduction , TranscriptomeABSTRACT
ZTW-41, an indolizinoquinoline-5,12-dione derivative, was investigated for antibacterial activity against Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). In our study, the MIC90s (minimum inhibitory concentrations) of ZTW-41 against MRSA (MRSA, n = 200), methicillin-sensitive S. aureus (MSSA, n = 100), Enterococcus faecalis (E. faecalis, n = 32), and Enterococcus faecium (E. faecium n = 32) were 0.25, 0.25, 0.125, and 8 µg/mL, respectively, whereas the MBC90s (minimum bactericidal concentrations) were 2, 1, 1, and >32 µg/mL, respectively. ZTW-41 maintained its potency at different pH levels (range 5-9) and in starting inoculum size up to 107 CFU/mL. The presence of human serum (25-75%) increased ZTW-41 MICs by two- to eightfold. Time-kill curves showed that ZTW-41 had bactericidal activity against MRSA, MSSA, and E. faecalis strains within 8 hours, and rebound growth occurred after 8 hours except at higher multiples of the MIC (4 × and 8 × ). In the acute toxicity study, no mortality or signs of toxicity was noted in mice after 14 days of observation at doses <50 mg/kg. ZTW-41 exhibited good selectivity indices (SIs) (SI = IC50/MIC90) ranging from 1.12 to 71.76 against clinical isolates, demonstrating excellent therapeutic selectivity in MRSA, MSSA, and E. faecalis strains. Moreover, the in vivo efficacy (effective dose [ED]50 = 6.59 mg/kg) of ZTW-41 was found comparable with vancomycin. Collectively, our favorable results supported ZTW-41 as a promising investigational candidate for treating drug-resistant bacteria infection.