Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Cell Biochem ; 120(2): 1754-1762, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30160788

ABSTRACT

The pathogenic mechanism of autism is complex, and current research has shown that long noncoding RNAs (lncRNAs) may play important roles in this process. The antisense lncRNA of SH3 and multiple ankyrin repeat domains 2 (Shank2-AS) is upregulated in patients with autism spectrum disorder (ASD), whereas the expression of its sense strand gene Shank2 is downregulated. In neuronal cells, Shank2-AS and Shank2 can form a double-stranded RNA and inhibit Shank2 expression. Overexpression of Shank2-AS decreases neurite numbers and lengths, thereby inhibiting the proliferation of neuronal cells and promoting their apoptosis. Overexpression of Shank2 inhibits the abovementioned effects of Shank2-AS, and transfection of a vector containing the 10th intron of Shank2 (Shank2-AS is reverse-transcribed from this region) also blocks the function of Shank2-AS. Shank2 small interfering RNA plays a role similar to Shank2-AS. Therefore, Shank2-AS is abnormally expressed in patients with ASD and may affect the structure and growth of neurons by regulating Shank2 expression, thereby facilitating the development of ASD.

2.
Zhongguo Zhong Yao Za Zhi ; 42(8): 1603-1608, 2017 Apr.
Article in Zh | MEDLINE | ID: mdl-29071869

ABSTRACT

Under the traditional processing theory "wine processing could promote the efficacy", Rhubarb after wine processing could treat the upper energizer diseases such as red swelling, and breath sores. Processing changes the medicinal properties of rhubarb, and thus results in different focuses in clinical application. In this study, a sensitive and specific method was developed for the determination of aloe-emodin, rhein and emodin in rats tissue. Rhubarb raw materials and its wine processed decoction were given to SD rats respectively by gavage administration, and then the contents of aloe-emodin, rhein and emodin in the tissues (heart, lung, brain, liver, kidney) were determined by HPLC-MS to explore the effect of wine processing on free anthraquinones in rat tissues. Experimental results showed that wine processing can significantly change the distribution of aloe emodin, rhein and emodin in rats in vivo, and the distribution of these components was increased in heart and lung tissues.There was no significant change of distribution in the liver and the kidney as compared with raw product group, and these three ingredients were not detected in the brain, indicating that aloe-emodin, rhein, emodin can not pass through the blood brain barrier.Therefore, wine processing had greater effect on distribution of free anthraquinones in rat tissues.This also verified the theory of traditional Chinese medicine, providing experimental basis for rhubarb processing mechanism.


Subject(s)
Anthraquinones/pharmacokinetics , Emodin/pharmacokinetics , Rheum/chemistry , Animals , Rats , Rats, Sprague-Dawley , Tissue Distribution , Wine
3.
Addict Biol ; 18(4): 665-77, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22913325

ABSTRACT

Cue-induced drug seeking progressively increases over time of withdrawal from drug self-administration in rats, a phenomenon called 'incubation of craving'. The underlying mechanisms have been linked to increased expression of brain-derived neurotrophic factor and GluR2-lacking AMPA receptors in the mesolimbic dopamine (DA) system and also to increased extracellular signal-regulated kinase activation in the central amygdala (CeA). However, it remains unclear whether any DA mechanism is also involved in incubation of craving. Recent research demonstrates that cue-induced cocaine seeking appears to parallel increased DA D3 , but not D1 or D2 , receptor expression in the nucleus accumbens (NAc) of rats over time of withdrawal, suggesting possible involvement of D3 receptors (D3 Rs) in incubation of cocaine craving. Here, we report that systemic or local administration of SB-277011A, a highly selective D3 R antagonist, into the NAc (core and shell) or the CeA, but not the dorsal striatum or basolateral amygdala, significantly inhibits expression of incubation of cocaine craving in rats after 2-30 days of withdrawal from previous cocaine self-administration but had no effect on sucrose-seeking behavior in rats after 10-30 days of withdrawal. These data suggest that DA D3 Rs in both the NAc and the CeA play an important role in incubation of cocaine craving in rats and support the potential utility of D3 R antagonists in the treatment of cocaine addiction.


Subject(s)
Cocaine-Related Disorders/drug therapy , Cocaine/administration & dosage , Dopamine Antagonists/pharmacology , Drug-Seeking Behavior/drug effects , Nitriles/pharmacology , Nucleus Accumbens/drug effects , Receptors, Dopamine D3/physiology , Tetrahydroisoquinolines/pharmacology , Amygdala/drug effects , Amygdala/metabolism , Analysis of Variance , Animals , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Cues , Disease Models, Animal , Dopamine Antagonists/administration & dosage , Dose-Response Relationship, Drug , Drug-Seeking Behavior/physiology , Humans , Locomotion/drug effects , Male , Microinjections , Nitriles/administration & dosage , Nucleus Accumbens/metabolism , Rats , Receptors, Dopamine D3/antagonists & inhibitors , Receptors, Dopamine D3/metabolism , Reinforcement, Psychology , Secondary Prevention , Self Administration/methods , Sucrose/administration & dosage , Tetrahydroisoquinolines/administration & dosage , Time Factors
4.
Biochem Pharmacol ; 210: 115458, 2023 04.
Article in English | MEDLINE | ID: mdl-36803956

ABSTRACT

Oncogene FLT3 internal tandem duplication (FLT3-ITD) mutation accounts for 30 % of acute myeloid leukaemia (AML) cases and induces transformation. Previously, we found that E2F transcription factor 1 (E2F1) was involved in AML cell differentiation. Here, we reported that E2F1 expression was aberrantly upregulated in AML patients, especially in AML patients carrying FLT3-ITD. E2F1 knockdown inhibited cell proliferation and increased cell sensitivity to chemotherapy in cultured FLT3-ITD-positive AML cells. E2F1-depleted FLT3-ITD+ AML cells lost their malignancy as shown by the reduced leukaemia burden and prolonged survival in NOD-PrkdcscidIl2rgem1/Smoc mice receiving xenografts. Additionally, FLT3-ITD-driven transformation of human CD34+ hematopoietic stem and progenitor cells was counteracted by E2F1 knockdown. Mechanistically, FLT3-ITD enhanced the expression and nuclear accumulation of E2F1 in AML cells. Further study using chromatin immunoprecipitation-sequencing and metabolomics analyses revealed that ectopic FLT3-ITD promoted the recruitment of E2F1 on genes encoding key enzymatic regulators of purine metabolism and thus supported AML cell proliferation. Together, this study demonstrates that E2F1-activated purine metabolism is a critical downstream process of FLT3-ITD in AML and a potential target for FLT3-ITD+ AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Mice , Animals , Mice, Inbred NOD , Leukemia, Myeloid, Acute/metabolism , Cells, Cultured , Antigens, CD34 , Purines , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Mutation , E2F1 Transcription Factor/genetics
5.
Addict Biol ; 17(2): 259-73, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21507153

ABSTRACT

The dopamine (DA) D3 receptor is posited to be importantly involved in drug reward and addiction, and D3 receptor antagonists have shown extraordinary promise as potential anti-addiction pharmacotherapeutic agents in animal models of drug addiction. SB-277011A is the best characterized D3 receptor antagonist in such models. However, the potential use of SB-277011A in humans is precluded by pharmacokinetic and toxicity problems. We here report a novel D3 receptor antagonist YQA14 that shows similar pharmacological properties as SB-277011A. In vitro receptor binding assays suggest that YQA14 has two binding sites on human cloned D3 receptors with K(i-High) (0.68 × 10(-4) nM) and K(i-Low) (2.11 nM), and displays > 150-fold selectivity for D3 over D2 receptors and > 1000-fold selectivity for D3 over other DA receptors. Systemic administration of YQA14 (6.25-25 mg/kg) or SB-277011A (12.5-25 mg/kg) significantly and dose-dependently reduced intravenous cocaine self-administration under both low fixed-ratio and progressive-ratio reinforcement conditions in rats, while failing to alter oral sucrose self-administration and locomotor activity, suggesting a selective inhibition of drug reward. However, when the drug dose was increased to 50 mg/kg, YQA14 and SB-277011A significantly inhibited basal and cocaine-enhanced locomotion in rats. Finally, both D3 antagonists dose-dependently inhibited intravenous cocaine self-administration in wild-type mice, but not in D3 receptor-knockout mice, suggesting that their action is mediated by D3 receptor blockade. These findings suggest that YQA14 has a similar anti-addiction profile as SB-277011A, and deserves further study and development.


Subject(s)
Cocaine-Related Disorders/prevention & control , Cocaine/administration & dosage , Dopamine Antagonists/pharmacology , Nitriles/administration & dosage , Receptors, Dopamine D3/antagonists & inhibitors , Tetrahydroisoquinolines/administration & dosage , Animals , Benzoxazoles/pharmacology , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Fluorenes/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Infusions, Intravenous , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Nitriles/pharmacology , Piperazines/pharmacology , Quinpirole/pharmacology , Radioligand Assay , Random Allocation , Rats , Rats, Long-Evans , Reinforcement, Psychology , Reward , Self Administration , Sucrose/administration & dosage , Tetrahydroisoquinolines/pharmacology
6.
Cell Prolif ; 55(3): e13185, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35092119

ABSTRACT

OBJECTIVES: This study aimed to investigate the biological impacts and possible mechanisms of a novel lncRNA, LncSIK1, in AML progression and retinoic acid-regulated AML cell development. MATERIALS AND METHODS: The expression pattern of LncSIK1 was evaluated by qPCR and fluorescence in situ hybridization. CCK-8 assay, immunofluorescence, Wright-Giemsa staining, flow cytometry and Western blotting were performed to assess cell proliferation and differentiation. Bioluminescence imaging and H&E staining were used to detect AML progression in vivo. RNA or chromatin immunoprecipitation assays were conducted to measure the interaction of E2F1 and LncSIK1 or the LC3 and DRAM promoters. Autophagy was measured by transmission electron microscopy and Western blotting. RESULTS: LncSIK1 was silenced in bone marrow mononuclear cells from AML patients compared with those from healthy donors. LncSIK1 strengthened the effect of retinoic acid in inducing cell differentiation and inhibiting cell proliferation in AML cells. Moreover, the silencing of LncSIK1 was critical to maintaining AML leukaemogenesis, as LncSIK1 enhancement retarded AML progression in vivo. Mechanistically, in NB4 cells, LncSIK1 recruited the E2F1 protein to the promoters of LC3 and DRAM and induced autophagy-dependent degradation of the oncoprotein PML-RARa. However, LncSIK1 blocked E2F1 expression and the E2F1-mediated transcription of LC3 and DRAM, thereby relieving aggressive autophagy in Molm13 cells. CONCLUSIONS: Taken together, these data indicated that LncSIK1 was an important regulator of AML development through regulating the E2F1/autophagy signalling pathway.


Subject(s)
Autophagy/drug effects , E2F1 Transcription Factor/drug effects , RNA, Long Noncoding/genetics , Tretinoin/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , E2F1 Transcription Factor/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Mice, Transgenic
7.
Front Psychol ; 12: 712703, 2021.
Article in English | MEDLINE | ID: mdl-34858254

ABSTRACT

Cyberchondria is considered "the anxiety-amplifying effects of online health-related searches." During the COVID-19 pandemic, people are likely to search health-related information online for reassurance because of fear and related physical symptoms, while cyberchondria may be triggered due to the escalation of health anxiety, different online seeking behavior preference, information overload, and insufficient e-health literacy. This study aimed to investigate the status and influencing factors of cyberchondria in residents in China during the epidemic period of COVID-19. The participants were 674 community residents of Nanyang city surveyed from February 1 to 15, 2020. We administered online measures, including the Chinese Short Form of the Cyberchondria Severity Scale (C-CSS-12), Short Health Anxiety Inventory (SHAI), eHealth Literacy Scale (eHEALS), Patient Health Questionnaire-15 (PHQ-15), and COVID-19-related online information seeking behavior questionnaire. In our study, the average C-CSS-12 total score of residents was 30.65 ± 11.53 during the virus epidemic; 25% of participants scored 22 or below, 50% scored 23 to 38, and 21.9% scored 39 to 60. The SHAI total score (ß = 0.598 > 0, P < 0.001), the use of general search engines (ß = 1.867 > 0, P = 0.039), and searching for information on how to diagnose COVID-19 (ß = 2.280 > 0, P = 0.020) were independent risk factors for cyberchondria, while searching lasting less than 10 min each (ß = -2.992 < 0, P = 0.048), the use of traditional media digital platforms (ß = -1.650 < 0, P = 0.024) and professional medical communication platforms (ß = -4.189 < 0, P = 0.007) were independent protective factors. Our findings showed that nearly a quarter of the participants scored 39 or higher on the C-CSS-12 in Nanyang city during the pandemic, which should be taken seriously. Health anxiety and COVID-19-related online information seeking behavior including online duration, topics and choice on different information channels were important influencing factors of cyberchondria. These findings have implications for further research and clinical practice on cyberchondria in China.

8.
Eur J Pharmacol ; 908: 174381, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34310912

ABSTRACT

Epidemiological data suggest that the incidence of rheumatoid arthritis (RA) increases in postmenopausal women, which may be related to estrogen deficiency. Tissue acidosis is a common symptom of RA. Acid-sensitive ion channel 1a (ASIC1a), a member of the extracellular H+-activated cation channel family, could be activated by changes in extracellular pH and plays a crucial role in the pathogenesis of RA. As the only cellular component in cartilage tissue, chondrocytes play an extremely important role in maintaining cartilage tissue homeostasis. The aim of this study was to investigate whether estrogen could protect acid-stimulated chondrocytes by regulating the expression of ASIC1a and explore the possible mechanism. The results showed that estrogen could protect against acid-induced chondrocyte injury by reducing ASIC1a protein expression. Moreover, lysosome inhibitor chloroquine (CQ) and autophagy inhibitor 3-methyladeniine (3-MA) could reverse the reduction of ASIC1a protein caused by estrogen, indicating that autophagy-lysosome pathway contributes to estrogen-induced degradation of ASIC1a protein. Furthermore, the down-regulation of ASIC1a expression by estrogen was attenuated by MPP, a specific inhibitor of estrogen-related receptor-alpha (Esrra), indicating that Esrra is involved in the process of estrogen regulating the expression of ASIC1a. Additionally, adenosine 5'-monophosphate (AMP)-activated protein kinase/unc-51-like kinase 1 (AMPK-ULK1) signaling pathway was activated by estrogen treatment, which was abrogated by Esrra-silencing, and AMPK-specific inhibitor Compound C pretreatment could reduce estrogen-induced downregulation of ASIC1a protein. Taken together, these results indicate that estrogen could promote autophagy-lysosome pathway-dependent ASIC1a protein degradation and protect against acidosis-induced cytotoxicity, the mechanisms of which might relate to Esrra-AMPK-ULK1 signaling pathway.


Subject(s)
Chondrocytes , Acid Sensing Ion Channels , Acidosis , Animals , Cartilage, Articular , Humans , Proteolysis , Rats
9.
J Neurochem ; 112(2): 564-76, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19895667

ABSTRACT

Pharmacological activation of group II metabotropic glutamate receptors (mGluR2/3) inhibits cocaine self-administration and reinstatement of drug-seeking behavior, suggesting a possible use of mGluR2/3 agonists in the treatment of cocaine dependence. In this study, we investigated whether elevation of the endogenous mGluR2/3 ligand N-acetyl-aspartatylglutamate (NAAG) levels by the N-acetylated-alpha-linked-acidic dipeptidase inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) attenuates cocaine self-administration and cocaine-induced reinstatement of drug seeking. N-acetylated-alpha-linked-acidic dipeptidase is a NAAG degradation enzyme that hydrolyzes NAAG to N-acetylaspartate and glutamate. Systemic administration of 2-PMPA (10-100 mg/kg, i.p.) inhibited intravenous self-administration maintained by low unit doses of cocaine and cocaine (but not sucrose)-induced reinstatement of drug-seeking behavior. Microinjections of 2-PMPA (3-5 microg/side) or NAAG (3-5 microg/side) into the nucleus accumbens (NAc), but not into the dorsal striatum, also inhibited cocaine-induced reinstatement, an effect that was blocked by intra-NAc injection of LY341495, a selective mGluR2/3 antagonist. In vivo microdialysis demonstrated that 2-PMPA (10-100 mg/kg, i.p.) produced a dose-dependent reduction in both extracellular dopamine (DA) and glutamate, an effect that was also blocked by LY341495. Finally, pre-treatment with 2-PMPA partially attenuated cocaine-enhanced extracellular NAc DA, while completely blocking cocaine-enhanced extracellular NAc glutamate in rats during reinstatement testing. Intra-NAc perfusion of LY341495 blocked 2-PMPA-induced reductions in cocaine-enhanced extracellular NAc glutamate, but not DA. These findings suggest that 2-PMPA is effective in attenuating cocaine-induced reinstatement of drug-seeking behavior, likely by attenuating cocaine-induced increases in NAc DA and glutamate via pre-synaptic mGluR2/3s.


Subject(s)
Cocaine-Related Disorders/psychology , Cocaine/administration & dosage , Conditioning, Operant/drug effects , Dipeptides/pharmacology , Glutamate Carboxypeptidase II/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Organophosphorus Compounds/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Amino Acids/pharmacology , Analysis of Variance , Animals , Behavior, Animal/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cocaine-Related Disorders/metabolism , Corpus Striatum/drug effects , Corpus Striatum/physiology , Dopamine/metabolism , Dose-Response Relationship, Drug , Extinction, Psychological/drug effects , Glutamate Carboxypeptidase II/metabolism , Glutamic Acid/metabolism , Male , Microdialysis/methods , Microinjections/methods , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Rats , Rats, Long-Evans , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Reinforcement Schedule , Self Administration/methods , Sucrose/administration & dosage , Sweetening Agents/administration & dosage
10.
Autism Res ; 13(12): 2073-2082, 2020 12.
Article in English | MEDLINE | ID: mdl-33215882

ABSTRACT

Autism spectrum disorder (ASD) is a complex disease involving multiple genes and multiple sites, and it is closely related to environmental factors. It has been gradually revealed that long noncoding RNAs (lncRNAs) may regulate the pathogenesis of ASD at the epigenetic level. In neuronal cells, the lncRNA moesin pseudogene 1 antisense (MSNP1AS) forms a double-stranded RNA with moesin (MSN) to suppress moesin protein expression. MSNP1AS overexpression can activate the RhoA pathway and inhibit the Rac1 and PI3K/Akt pathways; however, the regulation of Rac1 by MSNP1AS is not associated with MSN, and the effect on the RhoA pathway may also be associated with other factors. MSNP1AS can decrease the number and length of neurites, inhibit neuronal cell viability and migration, and promote apoptosis. Downregulation of MSN expression functions similarly to MSNP1AS, and its overexpression can block the above functions of MSNP1AS. In addition, in vivo experiments show that MSN improves social interactions and reduces repetitive behaviors in BTBR mice, decreases the activity of RhoA and restores the activity of PI3K/Akt pathway. Therefore, the abnormal expression of MSNP1AS in ASD patients might influence the structure and survival of neuronal cells through the regulation of moesin protein expression to facilitate the development and progression of ASD. These findings provide new evidence for studying the mechanisms of lncRNAs in ASD. LAY SUMMARY: Autism spectrum disorder (ASD) is a common neurodevelopmental disease and its neurodevelopmental mechanisms have not been elucidated. More and more studies have found that long noncoding RNAs (lncRNAs) can regulate the development of central nervous system in many ways and affect the pathogenic process of ASD. Moesin pseudogene 1 antisense (MSNP1AS) is an up-regulated lncRNA in ASD patients. In-depth functional experiments showed that MSNP1AS inhibited moesin protein expression and regulated the activation of multiple signaling pathways, thus decreasing the number and length of neurites, inhibiting neuronal cell viability and migration, and promoting apoptosis. Therefore, MSNP1AS is an important lncRNA related to ASD and can regulate the biological function of neurons.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/genetics , Humans , Mice , Microfilament Proteins , Neurons/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , rac1 GTP-Binding Protein , rhoA GTP-Binding Protein/genetics
11.
Gene ; 755: 144889, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32534056

ABSTRACT

Ferroptosis, a newly discovered form of non-apoptotic cell death, is induced by an excessive degree of iron-dependent lipid peroxide. ATPR, a novel all-trans retinoic acid (ATRA) derivative, has been extensively developed to show superior anticancer effect than ATRA in acute myeloid leukemia (AML). However, whether ferroptosis exists during ATPR treatment of AML remains unclear. Herein, we found that ferroptosis occurred in an AML xenograft mouse model of ATPR treatment. In vitro, ATPR was verified to induce ferroptosis in a dose-dependent manner by proferroptotic protein marker, lipid peroxidation, and lipid ROS, which could be significantly reversed by ferrostatin-1. Using lysosomal inhibitor chloroquine and iron chelator desferrioxamine, we further revealed that ATPR-induced ferroptosis was regulated by autophagy via iron homeostasis, especially Nrf2. Furthermore, targeting ferroptosis contributes to ATPR-induced AML differentiation. In conclusion, these results indicated that ferroptosis play an important role in ATPR-induced differentiation, and suggested that ATPR would provide a potential therapeutic value for AML treatment.


Subject(s)
Ferroptosis/drug effects , Leukemia, Myeloid, Acute/metabolism , Reactive Oxygen Species/metabolism , Retinoids/pharmacology , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Homeostasis , Humans , Iron/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Nude , Signal Transduction/drug effects , Tretinoin/pharmacology , Xenograft Model Antitumor Assays
12.
Biomed Pharmacother ; 123: 109736, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31855738

ABSTRACT

Myelodysplastic syndrome (MDS) is a heterogeneously cloned hematopoietic stem cell malignancy with a high risk of developing acute myeloid leukemia (AML). 4-amino-2-trifluoromethyl-phenyl resinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed in our group, was proved to be a tumor inhibitor in diverse types of cancer cells in vitro. However, little has been known about the effects of ATPR on MDS. To analyze if and to what extent it's anti-tumor activity on MDS, we performed CCK-8, Flow Cytometry, Wright-Giemsa staining, qRT-PCR, and Western blot to analyze the SKM-1 cells state after ATPR treatment in multiplex detection angles. As expected, our results proved that ATPR could effectively induce cell differentiation and reduce cell proliferation of SKM-1 cell lines. Subsequently, to further analyze the potential mechanisms, we applied Label-free proteomic techniques to discover relevant protein that may be involved. Most notably, a series of factors related to RNA behavioral regulation were changed. Among them, we demonstrated that DEAD-box RNA helicase DDX23 was abnormally ablated in MDS patients and could be restored after ATPR treatment in vitro. Besides, our results suggested that ATPR-induced SKM-1 cell maturation was counteracted when knockdown DDX23, underscoring that DDX23 might be involved. In conclusion, we confirmed that ATPR could induce SKM-1 cells differentiation and its positive influence of DDX23 may provide a new idea to relieve MDS.


Subject(s)
DEAD-box RNA Helicases/genetics , Myelodysplastic Syndromes/drug therapy , Retinoids/pharmacology , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Gene Knockdown Techniques , Humans , Myelodysplastic Syndromes/physiopathology , Proteomics , Up-Regulation/drug effects
13.
Mol Cell Endocrinol ; 505: 110742, 2020 04 05.
Article in English | MEDLINE | ID: mdl-32006608

ABSTRACT

Epidemiological evidence suggests that the etiology and pathogenesis of rheumatoid arthritis (RA) are closely associated with estrogen metabolism and deficiency. Estrogen protects against articular damage. Estradiol replacement therapy ameliorates local inflammation and knee joint swelling in ovariectomized models of RA. The mechanistic basis for the protective role of 17ß-estradiol (17ß-E2) is poorly understood. Acid-sensing ion channel 1a (ASIC1a), a sodium-permeable channel, plays a pivotal role in acid-induced articular chondrocyte injury. The aims of this study were to evaluate the role of 17ß-E2 in acid-induced chondrocyte injury and to determine the effect of 17ß-E2 on the level and activity of ASIC1a protein. Results showed that pretreatment with 17ß-E2 attenuated acid-induced damage, suppressed apoptosis, and restored mitochondrial function. Further, 17ß-E2 was shown to reduce protein levels of ASIC1a through the ERα receptor, to protect chondrocytes from acid-induced apoptosis, and to induce ASIC1a protein degradation through the autophagy-lysosomal pathway. Taken together, these results show that the use of 17ß-E2 may be a novel strategy for the treatment of RA by reducing cartilage destruction through down-regulation of ASIC1a protein levels.


Subject(s)
Acid Sensing Ion Channels/metabolism , Apoptosis/drug effects , Cartilage, Articular/pathology , Chondrocytes/pathology , Estradiol/pharmacology , Animals , Autophagy/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Estrogen Receptor alpha/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Male , Proteolysis/drug effects , Rats, Sprague-Dawley
14.
Neuropsychopharmacology ; 33(7): 1735-45, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17728698

ABSTRACT

Previous studies suggest that cannabinoid CB1 receptors do not appear to be involved in cocaine's rewarding effects, as assessed by the use of SR141716A, a prototypic CB1 receptor antagonist and CB1-knockout mice. In the present study, we found that blockade of CB1 receptors by AM 251 (1-10 mg/kg), a novel CB1 receptor antagonist, dose-dependently lowered (by 30-70%) the break point for cocaine self-administration under a progressive-ratio (PR) reinforcement schedule in rats. The same doses of SR141716 (freebase form) maximally lowered the break point by 35%, which did not reach statistical significance. Neither AM 251 nor SR141716 altered cocaine self-administration under a fixed-ratio (FR2) reinforcement schedule. AM 251 (0.1-3 mg/kg) also significantly and dose-dependently inhibited (by 25-90%) cocaine-enhanced brain stimulation reward (BSR), while SR141716 attenuated cocaine's BSR-enhancing effect only at 3 mg/kg (by 40%). When the dose was increased to 10 or 20 mg/kg, both AM 251 and SR141716 became less effective, with AM 251 only partially inhibiting cocaine-enhanced BSR and PR cocaine self-administration, and SR141716 having no effect. AM 251 alone, at all doses tested, had no effect on BSR, while high doses of SR141716 alone significantly inhibited BSR. These data suggest that blockade of CB1 receptors by relatively low doses of AM 251 dose-dependently inhibits cocaine's rewarding effects, whereas SR141716 is largely ineffective, as assessed by both PR cocaine self-administration and BSR. Thus, AM 251 or other more potent CB1 receptor antagonists deserve further study as potentially effective anti-cocaine medications.


Subject(s)
Brain/drug effects , Cocaine/administration & dosage , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/administration & dosage , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Reward , Analysis of Variance , Animals , Behavior, Animal/drug effects , Brain/physiology , Dose-Response Relationship, Drug , Drug Interactions , Electric Stimulation/methods , Male , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Long-Evans , Reinforcement Schedule , Rimonabant , Self Administration/methods
15.
Psychopharmacology (Berl) ; 196(4): 533-42, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17985117

ABSTRACT

RATIONALE: We have previously reported that selective antagonism of brain D3 receptors by SB-277011A or NGB 2904 significantly attenuates cocaine- or nicotine-enhanced brain stimulation reward (BSR). OBJECTIVE: In the present study, we investigated whether the selective D3 receptor antagonists SB-277011A and NGB 2904 and the putative partial D3 agonist BP-897 similarly reduce methamphetamine (METH)-enhanced BSR. MATERIALS AND METHODS: Rats were trained to respond for rewarding electrical self-stimulation of the medial forebrain bundle. To assess the degree of drug-induced changes in BSR, a rate-frequency curve shift paradigm was used to measure brain-reward threshold (theta 0). RESULTS: METH (0.1-0.65 mg/kg, i.p.) dose-dependently lowered ( approximately 10-50%) BSR thresholds, producing an enhancement of BSR. Pretreatment with SB-277011A (12 mg/kg, but not 24 mg/kg, i.p.) significantly attenuated METH-enhanced BSR. NGB 2904 (0.1-1.0 mg/kg, but not 10 mg/kg) also attenuated METH-enhanced BSR. SB-277011A or NGB 2904 alone, at the doses tested, had no effect on BSR. Pretreatment with BP-897 (0.1-5 mg/kg) dose-dependently attenuated METH-enhanced BSR. However, when the dose was increased to 10 mg/kg, BP-897 shifted the stimulation-response curve to the right (inhibited BSR itself) in the presence or absence of METH. CONCLUSIONS: Selective antagonism of D3 receptors by SB-277011A or NGB 2904 attenuates METH-enhanced BSR in rats, while the METH-enhanced BSR attenuation produced by BP-897 may involve both D3 and non-D3 receptors. These findings support a potential use of selective D3 receptor antagonists for the treatment of METH addiction.


Subject(s)
Brain/drug effects , Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Receptors, Dopamine D3/agonists , Receptors, Dopamine D3/antagonists & inhibitors , Reward , Analysis of Variance , Animals , Brain/physiology , Dose-Response Relationship, Drug , Electric Stimulation , Fluorenes/pharmacology , Male , Nitriles/pharmacology , Piperazines/pharmacology , Rats , Rats, Long-Evans , Tetrahydroisoquinolines/pharmacology
16.
Drug Alcohol Depend ; 97(3): 207-15, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18065162

ABSTRACT

Gabapentin is a gamma-aminobutyric acid (GABA) analogue, with GABAmimetic pharmacological properties. Gabapentin is used for the treatment of seizures, anxiety and neuropathic pain. It has been proposed that gabapentin may be useful in the treatment of cocaine dependence. However, clinical trials with gabapentin have shown conflicting results, while preclinical studies are sparse. In the present study, we investigated the effects of gabapentin on intravenous cocaine self-administration and cocaine-triggered reinstatement of drug-seeking behavior, as well as on cocaine-enhanced dopamine (DA) in the nucleus accumbens (NAc). We found that gabapentin (25-200 mg/kg, i.p., 30 min or 2 h prior to cocaine) failed to inhibit intravenous cocaine (0.5 mg/kg/infusion) self-administration under a fixed-ratio reinforcement schedule or cocaine-triggered reinstatement of cocaine-seeking behavior. In vivo microdialysis showed that the same doses of gabapentin produced a modest increase (approximately 50%, p<0.05) in extracellular NAc GABA levels, but failed to alter either basal or cocaine-enhanced NAc DA. These data suggest that gabapentin is a weak GABA-mimic drug. At the doses tested, it has no effect in the addiction-related animal behavioral models here tested. This is in striking contrast to positive findings in the same animal models shown by another GABAmimetic--gamma-vinyl GABA (see companion piece to present article).


Subject(s)
Amines/therapeutic use , Anti-Anxiety Agents/therapeutic use , Cocaine-Related Disorders/rehabilitation , Cocaine/adverse effects , Cyclohexanecarboxylic Acids/therapeutic use , Disruptive, Impulse Control, and Conduct Disorders/chemically induced , Dopamine/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Vasoconstrictor Agents/adverse effects , gamma-Aminobutyric Acid/therapeutic use , Animals , Cocaine-Related Disorders/epidemiology , Gabapentin , Male , Rats , Rats, Long-Evans , Recurrence , Self Administration
17.
Drug Alcohol Depend ; 97(3): 216-25, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18063319

ABSTRACT

Relapse to drug use is a core feature of addiction. Previous studies demonstrate that gamma-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, attenuates the acute rewarding effects of cocaine and other addictive drugs. We here report that systemic administration of GVG (25-300 mg/kg) dose-dependently inhibits cocaine- or sucrose-induced reinstatement of reward-seeking behavior in rats. In vivo microdialysis data indicated that the same doses of GVG dose-dependently elevate extracellular GABA levels in the nucleus accumbens (NAc). However, GVG, when administered systemically or locally into the NAc, failed to inhibit either basal or cocaine-priming enhanced NAc dopamine in either naïve rats or cocaine extinction rats. These data suggest that: (1) GVG significantly inhibits cocaine- or sucrose-triggered reinstatement of reward-seeking behavior; and (2) a GABAergic-, but not dopaminergic-, dependent mechanism may underlie the antagonism by GVG of cocaine-triggered reinstatement of drug-seeking behavior, at least with respect to GVG's action on the NAc.


Subject(s)
Behavior, Addictive/prevention & control , Behavior, Animal/drug effects , Cocaine/administration & dosage , Dopamine/metabolism , Exploratory Behavior/drug effects , Extinction, Psychological/drug effects , GABA Agents/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Vigabatrin/pharmacology , Animals , Chromatography, High Pressure Liquid , GABA Agents/administration & dosage , Male , Rats , Rats, Long-Evans , Reward , Self Administration , Vigabatrin/administration & dosage
18.
Sci Rep ; 8(1): 3686, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487381

ABSTRACT

Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism.


Subject(s)
Cocaine/pharmacology , Glutamic Acid/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Dopamine/metabolism , Drug-Seeking Behavior/drug effects , Male , Pyridines/pharmacology , Rats , Rats, Long-Evans , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Self Administration
19.
J Neurosci ; 26(33): 8531-6, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16914679

ABSTRACT

Blockade of cannabinoid CB1 receptors has been reported to inhibit cocaine- or cocaine cue-induced reinstatement of drug seeking. However, the mechanisms underlying this action are poorly understood. Given the importance of dopamine, glutamate, and GABA in cocaine reward and relapse, we studied the effects of AM251 [N-(piperidin-1-yl)-5-(4-iodophonyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide], a novel highly selective CB1 receptor antagonist, on cocaine-primed reinstatement of drug-seeking behavior and on cocaine-induced changes in extracellular DA, glutamate, and GABA in the nucleus accumbens (NAc) under reinstatement conditions. We found that systemic administration of AM251 selectively inhibited cocaine-induced, but not sucrose plus sucrose cue-induced, reinstatement of reward-seeking behavior. AM251 alone did not trigger reinstatement. Local perfusion of AM251 into the NAc or the dorsal striatum also inhibited cocaine-triggered reinstatement. AM251 alone dose dependently elevated NAc glutamate in a voltage-dependent Na+ channel-dependent manner. AM251 did not affect NAc DA or GABA. Pretreatment with AM251 dose dependently inhibited cocaine-induced increases in NAc glutamate but not in DA. Blockade of NAc metabotropic glutamate mGluR2/3 receptors by LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] slightly facilitated cocaine-enhanced glutamate release but blocked the antagonism of cocaine-induced reinstatement by AM251. These data suggest the following: (1) CB1 receptors exert tonic inhibition over NAc glutamate release under cocaine-extinction conditions; (2) blockade of CB1 receptors by AM251 inhibits cocaine-enhanced NAc glutamate release and cocaine-triggered reinstatement; and (3) these effects appear to be mediated by activation of presynaptic mGluR2/3 autoreceptors secondary to AM251-induced increase (disinhibition) of NAc glutamate release.


Subject(s)
Cocaine-Related Disorders/etiology , Cocaine/pharmacology , Glutamic Acid/metabolism , Nucleus Accumbens/metabolism , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Cocaine-Related Disorders/psychology , Dopamine/metabolism , Extracellular Space/metabolism , Male , Rats , Rats, Long-Evans , Recurrence , Reward , gamma-Aminobutyric Acid/metabolism
20.
Neuropharmacology ; 53(6): 771-82, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17888459

ABSTRACT

It was recently reported that levo-tetrahydropalmatine (l-THP), a dopamine (DA) D1 and D2 receptor antagonist purified from the Chinese herb Stephanie, appears to be effective in attenuating cocaine self-administration, cocaine-triggered reinstatement and cocaine-induced conditioned place preference in preclinical animal models. The present study was designed to contrast l-THP's effects on cocaine self-administration under fixed-ratio (FR) and progressive-ratio (PR) reinforcement, and to study l-THP's effects on cocaine-enhanced brain stimulation reward (BSR). Systemic administration of l-THP produced dose-dependent, biphasic effects, i.e., low-to-moderate doses (1, 3, 10 mg/kg) increased, while a high dose (20 mg/kg) inhibited cocaine self-administration behavior under FR2 reinforcement. The increased cocaine self-administration is likely a compensatory response to a reduction in cocaine's rewarding effects, because the same low doses of l-THP dose-dependently attenuated cocaine self-administration under PR reinforcement and also attenuated cocaine-enhanced BSR. These attenuations of PR cocaine self-administration and cocaine-enhanced BSR are unlikely due to l-THP-induced sedation or locomotor inhibition, because only 10 mg/kg, but not 1-3 mg/kg, of l-THP inhibited locomotion, sucrose self-administration and asymptotic operant performance in the BSR paradigm. In vivo microdialysis demonstrated that l-THP slightly elevates extracellular nucleus accumbens DA by itself, but dose-dependently potentiates cocaine-augmented DA, suggesting that a postsynaptic, rather than presynaptic, DA receptor antagonism underlies l-THP's actions on cocaine reward. Together, the present data, combined with previous findings, support the potential use of l-THP for treatment of cocaine addiction.


Subject(s)
Berberine Alkaloids/therapeutic use , Brain/drug effects , Cocaine-Related Disorders/drug therapy , Cocaine/pharmacology , Reward , Animals , Antipsychotic Agents/therapeutic use , Behavior, Animal/drug effects , Cocaine/administration & dosage , Cocaine/antagonists & inhibitors , Conditioning, Operant/drug effects , Disease Models, Animal , Dopamine/metabolism , Dose-Response Relationship, Drug , Drug Antagonism , Male , Microdialysis , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Long-Evans , Reinforcement Schedule , Self Administration , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL