Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Publication year range
1.
Biotechnol Bioeng ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923503

ABSTRACT

Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Gene editing technology repairs the conversion of the 6th base T to C in exon 7 of the paralogous SMN2 gene, compensating for the SMN protein expression and promoting the survival and function of motor neurons. However, low editing efficiency and unintended off-target effects limit the application of this technology. Here, we optimized a TaC9-adenine base editor (ABE) system by combining Cas9 nickase with the transcription activator-like effector (TALE)-adenosine deaminase fusion protein to effectively and precisely edit SMN2 without detectable Cas9 dependent off-target effects in human cell lines. We also generated human SMA-induced pluripotent stem cells (SMA-iPSCs) through the mutation of the splice acceptor or deletion of the exon 7 of SMN1. TaC9-R10 induced 45% SMN2 T6 > C conversion in the SMA-iPSCs. The SMN2 T6 > C splice-corrected SMA-iPSCs were directionally differentiated into motor neurons, exhibiting SMN protein recovery and antiapoptosis ability. Therefore, the TaC9-ABE system with dual guides from the combination of Cas9 with TALE could be a potential therapeutic strategy for SMA with high efficacy and safety.

2.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165196

ABSTRACT

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Murine hepatitis virus , Animals , Bacteria , Cathepsin B , Humans , Lung , Lysosomes , Mice , SARS-CoV-2
3.
J Virol ; 96(2): e0124121, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705554

ABSTRACT

Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.


Subject(s)
Coronavirus Infections/immunology , Interferon Type I/immunology , Interferons/immunology , Lung , Animals , Female , Lung/immunology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Interferon Lambda
4.
J Immunol ; 206(2): 329-334, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33277388

ABSTRACT

The COVID-19 pandemic has affected more than 20 million people worldwide, with mortality exceeding 800,000 patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity. Each of these risk factors pathologically disrupts the lipidome, including immunomodulatory eicosanoid and docosanoid lipid mediators (LMs). We hypothesized that dysregulation of LMs may be a defining feature of the severity of COVID-19. By examining LMs and polyunsaturated fatty acid precursor lipids in serum from hospitalized COVID-19 patients, we demonstrate that moderate and severe disease are separated by specific differences in abundance of immune-regulatory and proinflammatory LMs. This difference in LM balance corresponded with decreased LM products of ALOX12 and COX2 and an increase LMs products of ALOX5 and cytochrome p450. Given the important immune-regulatory role of LMs, these data provide mechanistic insight into an immuno-lipidomic imbalance in severe COVID-19.


Subject(s)
COVID-19 , Eicosanoids , Lipidomics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Arachidonate 12-Lipoxygenase/immunology , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/immunology , Arachidonate 5-Lipoxygenase/metabolism , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Eicosanoids/blood , Eicosanoids/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
5.
Bioorg Chem ; 140: 106769, 2023 11.
Article in English | MEDLINE | ID: mdl-37633128

ABSTRACT

Photoinduced DNA cross-linking process showed advantages of high spatio-temporal resolution and control. We have designed, synthesized, and characterized several 4,4'-dibromo binaphthalene analogues (1a-f) that can be activated by 350 nm irradiation to induce various DNA damage, including DNA interstrand cross-links (ICL) formation, strand cleavages, and alkaline labile DNA lesions. The degree and types of DNA damage induced by these compounds depend on the leaving groups of the substrates, pH value of the buffer solution, and DNA sequences. The DNA ICL products were produced from the carbocations formed via the oxidation of free radicals photo-generated from 1a-f. Most of these compounds alone exhibited minimum cytotoxicity towards cancer cells while 350 nm irradiation greatly improved their anticancer effects (up to 40-fold enhancement) because of photo-induced cellular DNA damage. This work provides guidance for further design of photo-inducible DNA cross-linking agents as potent photo-activated anticancer prodrugs with good control over toxicity and selectivity.


Subject(s)
Neoplasms , Prodrugs , DNA , DNA Damage
6.
Mol Ther ; 30(7): 2443-2451, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35443934

ABSTRACT

Predictable DNA off-target effect is one of the major safety concerns for the application of cytosine base editors (CBEs). To eliminate Cas9-dependent DNA off-target effects, we designed a novel effective CBE system with dual guiders by combining CRISPR with transcription activator-like effector (TALE). In this system, Cas9 nickase (nCas9) and cytosine deaminase are guided to the same target site to conduct base editing by single-guide RNA (sgRNA) and TALE, respectively. However, if nCas9 is guided to a wrong site by sgRNA, it will not generate base editing due to the absence of deaminase. Similarly, when deaminase is guided to a wrong site by TALE, base editing will not occur due to the absence of single-stranded DNA. In this way, Cas9- and TALE-dependent DNA off-target effects could be completely eliminated. Furthermore, by fusing TALE with YE1, a cytidine deaminase with minimal Cas9-independent off-target effect, we established a novel CBE that could induce efficient C-to-T conversion without detectable Cas9- or TALE-dependent DNA off-target mutations.


Subject(s)
Cytosine , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems , DNA/genetics , Gene Editing , RNA, Guide, Kinetoplastida/genetics , Transcription Activator-Like Effectors/genetics
7.
Chembiochem ; 23(3): e202100366, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34636113

ABSTRACT

Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.


Subject(s)
Boron Compounds/chemistry , Hydrogen Peroxide/analysis , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Molecular Structure
8.
Chem Res Toxicol ; 35(8): 1334-1343, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35857929

ABSTRACT

Five novel 1,1'-binaphthalene analogues 1a-1e with triphenylphosphonium (TPP+) salts as a leaving group have been synthesized and characterized as photo-activatable DNA alkylating agents. Phototriggered release of the TPP+ group from 1a-1e generated naphthalenylmethyl-free radicals that were spontaneously transformed to the corresponding cations directly producing DNA interstrand cross-link (ICL) formation via alkylation. The substituents at position 4 not only affect the efficiency of ICL formation but also influence the reaction rate for DNA cross-linking. Groups with small or medium size favor ICL formation, while a bulky substituent (e.g., phenyl group) prevents DNA interstrand cross-linking. DNA alkylation by the naphthalenylmethyl cations photo-generated from 1a-1e occurs at dG, dC, and dA, while interstrand cross-linking took place with dG/dC base pairs. The TPP+ salts (1a-1e) are cations with both lipophilic and hydrophilic properties, which have great potential for biological applications.


Subject(s)
DNA , Salts , Base Pairing , Cations , Cross-Linking Reagents , DNA/genetics , Salts/pharmacology
9.
BMC Gastroenterol ; 22(1): 330, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35799116

ABSTRACT

BACKGROUND: Thyroid dysfunction has been reported in severe liver diseases. The aim of this study was to analyze the impact of serum thyroid-stimulation hormone (TSH) levels on the prognosis of patients with hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). METHODS: This retrospective cohort study included 1,862 patients with HBV-related ACLF. Risk factors associated with 30-day and 90-day survival, hazard ratios (HRs), and 95% confidence intervals (CIs) for TSH were estimated using Cox proportional hazards regression. The Area Under the ROC curve (AUROC) analysis was carried out, and the cut-off values were calculated. After grouping by the cut-off value, survival was compared between the groups using the log-rank test. This study data is from the "Survival Cohort Study (SCS)", which has been registered at ClinicalTrials.gov (NCT03992898). RESULTS: Multivariate analysis indicated that an elevated TSH level was a highly significant predictor for 30-day survival (HR = 0.743, 95% CI: 0.629-0.878, P < 0.001) and 90-day survival (HR = 0.807, 95% CI: 0.717-0.909, P < 0.001). The AUROC of TSH level for 30-day and 90-day mortality were 0.655 and 0.620, respectively, with the same best cut-off values of 0.261 µIU/mL. Log-rank test showed that the group with higher TSH level had higher 30-day (78.5%, 95% CI: 76.1%-80.9% vs. 56.9%, 95% CI: 53.4%-60.4%; P < 0.001) and 90-day survival rate (61.5%, 95% CI: 58.6%-64.4% vs. 42.8%, 95% CI: 39.3%-46.3%; P < 0.001). Similar findings were observed in subgroups analysis. After adjusting for age and other risk factors, the higher level of TSH remained associated with 30-day survival (HR = 0.602, 95% CI: 0.502-0.721, P < 0.001) and 90-day survival (HR = 0.704, 95% CI, 0.609-0.814, P < 0.001). CONCLUSIONS: Serum TSH level significantly correlate with HBV-related ACLF patients' survival and may be of value for predicting 30-day and 90-day survival of patients with HBV-related ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis B, Chronic , Hepatitis B , Cohort Studies , Hepatitis B/complications , Hepatitis B virus , Hormones , Humans , Prognosis , ROC Curve , Retrospective Studies , Thyroid Gland , Thyrotropin
10.
Epidemiol Infect ; 150: e147, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35788251

ABSTRACT

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a severe and life-threatening complication, characterised by multi-organ failure and high short-term mortality. However, there is limited information on the impact of various comorbidities on HBV-ACLF in a large population. This study aimed to investigate the relationship between comorbidities, complications and mortality. In this retrospective observational study, we identified 2166 cases of HBV-ACLF hospitalised from January 2010 to March 2018. Demographic data from the patients, medical history, treatment, laboratory indices, comorbidities and complications were collected. The mortality rate in our study group was 47.37%. Type 2 diabetes mellitus was the most common comorbidity, followed by alcoholic liver disease. Spontaneous bacterial peritonitis, pneumonia and hepatic encephalopathy (HE) were common in these patients. Diabetes mellitus and hyperthyroidism are risk factors for death within 90 days, together with gastrointestinal bleeding and HE at admission, HE and hepatorenal syndrome during hospitalisation. Knowledge of risk factors can help identify HBV-ACLF patients with a poor prognosis for HBV-ACLF with comorbidities and complications.


Subject(s)
Acute-On-Chronic Liver Failure , Diabetes Mellitus, Type 2 , Hepatitis B, Chronic , Hepatitis B , Acute-On-Chronic Liver Failure/etiology , Acute-On-Chronic Liver Failure/microbiology , Comorbidity , Hepatitis B/complications , Hepatitis B/epidemiology , Hepatitis B virus , Hepatitis B, Chronic/complications , Humans , Prognosis , Retrospective Studies , Risk Factors
11.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1137-L1146, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33851886

ABSTRACT

Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. The mechanisms promoting disease pathogenesis and progression are unknown, although interleukin-15 (IL-15) has been associated with the immune-mediated inflammation of sarcoidosis. Because the identification of a mechanistically based, clinically relevant biomarker for sarcoidosis remains elusive, we hypothesized this role for IL-15. Pulmonary sarcoidosis granuloma formation was modeled using trehalose 6,6'-dimicolate (TDM), which was administered into wild-type and three lineages of mice: those overexpressing IL-15, deficient in IL-15, and deficient in IL-15 receptor α. The number of granulomas per lung was counted and normalized to the wild type. IL-15 concentrations were measured in the bronchoalveolar lavage (BAL) from healthy controls and subjects with sarcoidosis in our cohort, where associations between IL-15 levels and clinical manifestations were sought. Findings were validated in another independent sarcoidosis cohort. TDM administration resulted in similar granuloma numbers across all lineages of mice. IL-15 concentrations were elevated in the BAL of both human cohorts, irrespective of disease phenotypes. In exploratory analysis, an association with obesity was observed, and various other soluble mediators were identified in the BAL of both cohorts. Although IL-15 is enriched in the sarcoidosis lung, it was independent of disease pathogenesis or clinical manifestations in our mouse model and human cohorts of sarcoidosis. An association with obesity perhaps reflects the ongoing inflammatory processes of these comorbid conditions. Our findings showed that IL-15 is redundant for disease pathogenesis and clinical progression of sarcoidosis.


Subject(s)
Granuloma/metabolism , Interleukin-15/metabolism , Phenotype , Sarcoidosis, Pulmonary/pathology , Sarcoidosis/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Disease Models, Animal , Granuloma/pathology , Inflammation/pathology , Interleukin-15/genetics , Lung/metabolism , Lung/pathology , Sarcoidosis/pathology , Sarcoidosis, Pulmonary/complications
12.
Chemistry ; 27(16): 5215-5224, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33440025

ABSTRACT

Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.


Subject(s)
Biphenyl Compounds , DNA , Cations , Cross-Linking Reagents
13.
J Org Chem ; 86(1): 493-506, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33253574

ABSTRACT

We have synthesized and characterized two small libraries of 2-OMe or 2-NO2-benzene analogues 2a-i and 3a-i containing a wide variety of leaving groups. Irradiation of these compounds at 350 nm generated benzyl radicals that were spontaneously oxidized to benzyl cations directly producing DNA interstrand cross-links (ICLs). Compounds with a 2-methoxy substituent showed a faster cross-linking reaction rate and higher ICL efficiency than the corresponding 2-nitro analogues. Apart from the aromatic substituent, the benzylic leaving groups greatly affected DNA cross-linking efficiency. Higher ICL yields were observed for compounds with OCH3 (3b), OCH2Ph (3d), or Ph3P+ (3i) as leaving groups than those containing OAc (3a), NMe2 (3e), morpholine (3f), OCH2CH═CH2 (3c), SPh (3g), or SePh (3h). The heat stability study of the isolated ICL products indicated that dGs were the preferred alkylation sites in DNA for the benzyl cations produced from 2a-i, 3c, and 3e-i while 3a (L = OAc), 3b (L = OMe), and 3d (L = OCH2Ph) showed a similar photoreactivity toward dGs and dAs. Although the photogenerated benzyl cations alkylated dG, dC, and dA, ICL assay with variation of DNA sequences showed that the ICL reaction occurred with opposing dG/dC but not with staggered dA/dA.

14.
Chemistry ; 24(30): 7671-7682, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29479750

ABSTRACT

Photoactivated DNA interstrand cross-linking agents have a wide range of biological applications. Recently, several aryl boronates have been reported to induce DNA interstrand cross-link (ICL) formation via carbocations upon photoirradiation. Herein, we synthesized a series of new bifunctional phenyl compounds to test the generality of such a mechanism, and to understand how the chemical structure influences carbocation formation and the DNA cross-linking process. These compounds efficiently form DNA ICLs via generated benzyl cations upon 350 nm irradiation. The DNA cross-linking efficiency and the pathway for carbocation generation depend on both the aromatic substituents and the leaving groups. Bromine as a leaving group facilitates the DNA cross-linking process in comparison with trimethyl ammonium salt. Both electron-donating and -withdrawing substituents induce bathochromic shifts, which favor photoinduced DNA ICL formation. For the bromides, the benzyl cation intermediates were generated through oxidation of the corresponding benzyl radicals. However, for the ammonia salts, the benzyl cations were formed through two pathways: either through oxidation of the benzyl radicals or by direct heterolysis of the C-N bond. Photoinduced C-N homolysis to form benzyl radicals occurred with compounds having donating substituents, whereas direct heterolysis of the C-N bond occurred with those bearing withdrawing substituents. The adducts formed between 1 a and four natural nucleosides were characterized, indicating that the alkylation sites for the photogenerated benzyl cations are dG, dA, and dC.


Subject(s)
Benzyl Compounds/chemistry , Cations/chemistry , Cross-Linking Reagents/chemistry , DNA/chemistry , Alkylation , DNA Damage , Electrons , Oxidation-Reduction , Salts
15.
J Org Chem ; 83(16): 8815-8826, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29929368

ABSTRACT

Most recently, alkylation via photogenerated carbocations has been identified as a novel mechanism for photoinduced DNA interstrand cross-link (ICL) formation by bifunctional aryl compounds. However, most compounds showed a low efficiency for DNA cross-linking. Here, we have developed a series of new 1,1'-binaphthalene analogues that efficiently form DNA ICLs upon 350 nm irradiation via generated 2-naphthalenylmethyl cations. The DNA cross-linking efficiency depends on the substituents at position 4 of the naphthalene moiety as well as the leaving groups. Compounds with NO2, Ph, H, Br, or OMe substituents led to 2-4 times higher DNA ICL yields than those with a boronate ester group. Compounds with trimethylammonium salt as a leaving group showed slightly better cross-linking efficiency than those with bromo as a leaving group. Some of these compounds showed a better cross-linking efficiency than that of traditional alkylating agents, such as nitrogen mustard analogues or quinone methide precursors. These highly efficient photoactivated carbocation precursors allow determination and characterization of the adducts formed between the photogenerated naphthalenyl cations and four natural nucleosides, indicating that the alkylation sites for these naphthalene analogues are dG, dA, and dC.


Subject(s)
Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/pharmacology , DNA/chemistry , Drug Design , Naphthalenes/chemical synthesis , Naphthalenes/pharmacology , Ultraviolet Rays , Alkylation , Base Sequence , Chemistry Techniques, Synthetic , Cross-Linking Reagents/chemistry , DNA/genetics , Naphthalenes/chemistry
16.
Int J Mol Sci ; 19(7)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011782

ABSTRACT

The blends of Poly(propylene carbonate) (PPC) and polyester-based thermoplastic polyurethane (TPU) were melt compounded in an internal mixer. The compatibility, thermal behaviors, mechanical properties and toughening mechanism of the blends were investigated using Fourier transform infrared spectra (FTIR), tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical analysis technologies. FTIR and SEM examination reveal strong interfacial adhesion between PPC matrix and suspended TPU particles. Dynamic mechanical analyzer (DMA) characterize the glass transition temperature, secondary motion and low temperature properties. By the incorporation of TPU, the thermal stabilities are greatly enhanced and the mechanical properties are obviously improved for the PPC/TPU blends. Moreover, PPC/TPU blends exhibit a brittle-ductile transition with the addition of 20 wt % TPU. It is considered that the enhanced toughness results in the shear yielding occurred in both PPC matrix and TPU particles of the blends.


Subject(s)
Biodegradable Plastics/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Propane/analogs & derivatives , Calorimetry, Differential Scanning , Hydrogen Bonding , Microscopy, Electron, Scanning , Propane/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Tensile Strength
17.
Chembiochem ; 17(21): 2046-2053, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27558701

ABSTRACT

Coumarin moieties react with thymine and cytosine in DNA by photoinduced [2+2] cycloaddition, which allows quantitative DNA interstrand crosslink (ICL) formation. Here, we report the application of coumarin analogues for DNA photoligation and the rearrangement of coumarin-induced ligation to ICL products. Both DNA sequences and the linker units at position 4 of the coumarin moieties affected coumarin-induced DNA photoligation. A flexible linker unit favored DNA ICL formation but led to inefficient photoligation, whereas coumarins without linker units greatly increased DNA photoligation efficiency. DNA photoligation induced by the coumarin moiety was photoswitchable. Ligation products were formed between coumarin and dT or dC upon 350 nm irradiation but reverted to the original single-stranded oligodeoxyribonucleotides (ODNs) upon 254 nm irradiation. Rearrangement of ligated ODNs into ICL products occurred during the switchable (350 nm/254 nm) processes. Additionally, photoinduced cleavage of coumarin 3 occurred with dC-3 cycloadducts upon 254 nm irradiation, which was confirmed by mass spectrometry analysis.


Subject(s)
Coumarins/chemistry , Coumarins/pharmacology , Cross-Linking Reagents/chemistry , DNA/chemistry , DNA/drug effects , Humans , Molecular Structure , Photochemical Processes
18.
Chemistry ; 22(30): 10382-6, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27189512

ABSTRACT

Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents.


Subject(s)
Boronic Acids/chemistry , Cross-Linking Reagents/chemistry , DNA Damage , DNA/chemistry , Naphthalenes/chemistry , Cyclic N-Oxides/chemistry , Electron Transport , Free Radicals/chemistry , Hydroxylamines/chemistry , Nucleic Acid Conformation , Photochemical Processes , Ultraviolet Rays
19.
J Nanosci Nanotechnol ; 16(3): 2504-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455662

ABSTRACT

A homogeneous C60 tri-diethyl malonate membrane was fabricated by a facile electro-spinning method. Comprehensive characterizations of its assembling structure, such as SEM, TEM, TGA, UV-vis, and FTIR, were carried out. Different fullerene derivatives show different assembling characters during the electrospining process. Notably, C60 tri-diethyl malonate with close-knite structures can form a stable structure after removing the assistant polymer of PVP. The antibacterial experiments of C60 tri-diethyl malonate membrane were performed, and the results revealed that this membrane owns excellent antibacterial activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fullerenes/chemistry , Malonates/chemistry , Membranes, Artificial , Anti-Bacterial Agents/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL