Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Dermatol Surg ; 50(10): 926-930, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38748664

ABSTRACT

BACKGROUND: Alopecia significantly affects the mental health and social relationship of women since childbearing age, highlighting the need for a safe, effective, and convenient treatment. METHODS: The authors have conducted a prospective self-controlled trial involving 15 female patients at childbearing age with alopecia. These patients received a subcutaneous scalp injection of platelet-rich plasma once every 4 weeks for 3 treatments in total. Outcome measurements were included below: changes in hair density (hair/cm 2 ), hair follicle density (hair follicle/cm 2 ), and overall photographic assessment (improved or not) at 4, 12, and 24 weeks right after the first treatment. RESULTS: Comparing the photographs taken before and after the intervention, 67% of patients' hair density increased from 151 ± 39.82 hairs/cm 2 (preintervention) to 170.96 ± 37.14 hairs/cm 2 (at 24-week follow-up), representing an approximate increase of 19 hairs/cm 2 . Meanwhile, hair follicle density increased by approximately 15 follicles/cm 2 after 24 weeks since the first treatment, rising from 151.04 ± 41.99 follicles/cm 2 to 166.72 ± 37.13 follicles/cm 2 . The primary adverse reactions observed were local swelling and pain due to injections. CONCLUSION: Local injection of nonactivated platelet-rich plasma with low leukocytes concentration could be an effective strategy to alleviate alopecia symptoms in female patients.


Subject(s)
Alopecia , Platelet-Rich Plasma , Humans , Female , Alopecia/therapy , Prospective Studies , Adult , Hair Follicle , Young Adult , Injections, Subcutaneous , Treatment Outcome , Scalp , Hair
2.
Support Care Cancer ; 31(4): 234, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36964800

ABSTRACT

PURPOSES: The purposes of this discrete choice experiment are as follows: (1) quantify the relevant characteristics that may affect the follow-up selection of gastric cancer patients after surgery and (2) explore the differences in follow-up preferences of gastric cancer patients at different stages and reveal the change trend of preferences over time, thereby providing references for the formulation and optimization of follow-up strategies. METHODS: A survey instrument that was developed using the design principle of a discrete choice experiment investigated gastric cancer patients on the day of discharge, and at 3 months, 6 months, and 12 months after discharge. In Stata 15.0, a mixed logit model was used to explore the preferences of gastric cancer patients after surgery at different stages, the willingness to pay was calculated, and the NLCOM command was used to simulate the follow-up uptake rates of different attribute levels at different stages. RESULTS: On the day of discharge, and 3 months, 6 months, and 12 months after discharge, the most important attribute levels of gastric cancer patients after surgery were "thoroughness-very thorough," "method-face-to-face," "thoroughness-very thorough," and "provider-specialist nurse," respectively, and patients were willing to pay more for these services. Patients' preference for the attribute level "very thorough" decreased over time, while their preferences for "specialist doctors" as follow-up providers remained relatively stable. Furthermore, the attribute levels with the greatest effect on receiving the baseline follow-up program varied across stages. CONCLUSION: The gastric cancer patients' preferences for follow-up change over time, and the time factor should be considered when developing follow-up strategies.


Subject(s)
Choice Behavior , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Follow-Up Studies , Patient Preference , Surveys and Questionnaires
3.
J Nanobiotechnology ; 21(1): 496, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115131

ABSTRACT

Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.


Subject(s)
Enterocolitis, Necrotizing , Exosomes , Extracellular Vesicles , Animals , Humans , Infant, Newborn , Milk/chemistry , Intestinal Mucosa , Enterocolitis, Necrotizing/prevention & control
4.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239844

ABSTRACT

This study was conducted to evaluate the effects of a low-protein (LP) diet supplemented with sodium butyrate (SB), medium-chain fatty acids (MCFAs) and n-3 polyunsaturated fatty acids (PUFAs) on nutrient utilization and lipid and amino acid metabolism in weaned pigs. A total of 120 Duroc × Landrace × Yorkshire pigs (initial body weight: 7.93 ± 0.65 kg) were randomly assigned to five dietary treatments, including the control diet (CON), LP diet, LP + 0.2% SB diet (LP + SB), LP + 0.2% MCFA diet (LP + MCFA) and LP + 0.2% n-3 PUFA diet (LP + PUFA). The results show that the LP + MCFA diet increased (p < 0.05) the digestibility of dry matter and total P in pigs compared with the CON and LP diets. In the liver of the pigs, the metabolites involved in sugar metabolism and oxidative phosphorylation significantly changed with the LP diet compared with the CON diet. Compared with the LP diet, the altered metabolites in the liver of the pigs fed with the LP + SB diet were mainly associated with sugar metabolism and pyrimidine metabolism; the altered metabolites in the liver of pigs fed with the LP + MCFA and LP + PUFA diets were mainly associated with lipid metabolism and amino acid metabolism. In addition, the LP + PUFA diet increased (p < 0.05) the concentration of glutamate dehydrogenase in the liver of pigs compared with the LP diet. Furthermore, the LP + MCFA and LP + PUFA diets increased (p < 0.05) the mRNA abundance of sterol regulatory element-binding protein 1 and acetyl-CoA carboxylase in the liver compared with the CON diet. The LP + PUFA diet increased (p < 0.05) mRNA abundances of fatty acid synthase in the liver compared with the CON and LP diets. Collectively, the LP diet supplemented with MCFAs improved nutrient digestibility, and the LP diet supplemented with MCFAs and n-3 PUFAs promoted lipid and amino acid metabolisms.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids , Swine , Animals , Fatty Acids/pharmacology , Diet, Protein-Restricted , Dietary Supplements , Diet , Nutrients , Fatty Acids, Unsaturated , Butyric Acid , Amino Acids/metabolism , Sugars , Animal Feed/analysis
5.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139420

ABSTRACT

This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.


Subject(s)
Fatty Acids, Omega-3 , Microbiota , Animals , Swine , Butyric Acid , Diet, Protein-Restricted , Fatty Acids, Omega-3/pharmacology , Toll-Like Receptor 4/genetics , Fatty Acids , Antioxidants/metabolism , RNA, Messenger , Immunity
6.
Eur J Nutr ; 59(1): 327-344, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30701304

ABSTRACT

PURPOSE: Dietary protein, as important macronutrient, is vital for intestinal function and health status. We aimed to determine the effects of dietary protein source on growth performance and intestinal function of neonates with intrauterine growth retardation (IUGR) in a pig model. METHODS: Eighteen pairs of IUGR and normal birth weight (NBW) weaned pigs were allotted to be fed starter diet containing soybean protein concentrate (SPC) or spray-dried porcine plasma (SDPP) for 2 weeks. Growth performance, antioxidant variables, intestinal morphology and absorption capability, microbiota composition and short-chain fatty acids (SCFA) were assessed. RESULTS: IUGR led to poor growth performance, absorption capability and changes on antioxidant variables, while SDPP diet improved the growth performance, diarrhea index, intestinal morphology and antioxidant variables of IUGR or NBW pigs relative to that fed SPC diet. Importantly, SDPP diet improved bacterial diversity and increased the abundance of phylum Firmicutes, but decreased the phylum Proteobacteria in colonic digesta, associating with higher genera Lactobacillus and lower genera Escherichia-Shigella, linking to the increased concentration of SCFA. CONCLUSIONS: Our findings indicate that IUGR impairs the growth rate, intestinal function and oxidative status of weaned pigs, which could be partly improved by SDPP diet either for IUGR or NBW pigs, associating with the better antioxidant capability, composition of microbiotas and their metabolites.


Subject(s)
Animal Feed/microbiology , Animal Nutritional Physiological Phenomena , Dietary Proteins/administration & dosage , Fetal Growth Retardation/physiopathology , Intestines/microbiology , Intestines/physiopathology , Animal Feed/analysis , Animals , Animals, Newborn , Disease Models, Animal , Swine
7.
Eur J Nutr ; 56(4): 1753-1765, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27188336

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the effects of intrauterine growth retardation (IUGR) and Bacillus subtilis PB6 supplementation in formula milk (FORM) on growth performance, intestinal development and immune function of neonates using a porcine model. METHODS: Fourteen pairs of normal birth weight and IUGR piglets (7 days old) were randomly assigned to receive FORM or FORM supplemented with B. subtilis PB6 (FORM-BsPB6) for a period of 21 days. Blood samples, intestinal tissues and digesta were collected at necropsy and analysed for morphology, digestive enzyme activities, immune cell abundance, expression of genes associated with innate immunity and barrier function and microbial populations. RESULTS: Regardless of diet, IUGR significantly decreased average daily dry matter intake and average daily weight gain (P < 0.05). Moreover, IUGR significantly decreased plasma concentrations of immunoglobulin A, interleukin 1ß, count and percentage of blood lymphocytes (P < 0.05). Meanwhile, IUGR markedly decreased villous height and maltase activity, as well as mRNA abundance of Toll-like receptor 9 and Toll-interacting protein in the ileum (P < 0.05). Regardless of body weight, FORM-BsPB6 markedly decreased the feed conversion ratio (P < 0.05), due to better intestinal development, as indicated by increased villous height (P < 0.05), activities of maltase and sucrase in the intestine (P < 0.10). Moreover, both mRNA and protein abundances of zonula occludens-1 and claudin-1 in the ileum as well as the copy number of Bacillus in colonic digesta were increased (P < 0.05) in piglets fed FORM-BsPB6 relative to FORM. CONCLUSION: The results of this study indicate that IUGR delayed growth, intestinal development and immune function of piglets, while FORM-BsPB6 improved digestive capability and intestinal barrier function.


Subject(s)
Animals, Newborn/growth & development , Bacillus subtilis , Fetal Growth Retardation/therapy , Swine/growth & development , Animals , Claudin-1/genetics , Claudin-1/metabolism , Cytokines/blood , Diet , Disease Models, Animal , Gastrointestinal Microbiome , Ileum/metabolism , Ileum/microbiology , Immunoglobulins/blood , Probiotics/administration & dosage , Sequence Analysis, DNA , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Weaning , Weight Gain , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
8.
Chemphyschem ; 17(4): 541-7, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26677195

ABSTRACT

The reaction pathway of the formation of 3,4-dinitrofuroxan from glyoxime is theoretically investigated under experimental conditions with 25 % nitric acid and dinitrogentetroxide reagents to clarify the mechanism of formation of a furoxan ring by glyoxime. The geometric configurations of minima and transition-state species are optimized at the (U)B3LYP/6-311++G** level. The CCSD(T) and CASSCF(10e,8o)/CASSCF(9e,8o) single-point energy corrections at the same level are performed on top of the optimized geometries. A subsequent dynamic correlation by using NEVPT2/6-311++G**-level single-point energy calculations based on the CASSCF results is also performed to obtain accurate energy values. The formation reaction is analyzed from two processes: glyoxime nitration and 3,4-dinitroglyoxime (nitration product) oxidative cyclization. Calculation results indicate that the electrophilic substitution of nitronium ions from the protonated HNO3 and the abstraction of hydrogen ions by HNO3 molecules are requisites of glyoxime nitration. The formation of a furoxan ring from 3,4-dinitroglyoxime involves two possible mechanisms: 1) oxydehydrogenation by NO2 molecules and the subsequent torsion of NO radical groups to form a ring and 2) the alternation of dehydrogenation and cyclization. The intermediates and transition states in both routes exhibit monoradical and diradical characteristics. Singlet and triplet reactions are considered for the diradical species. Results show that the singlet reaction mechanism is more favorable for cyclization than the triplet reaction. The formation of a furoxan ring from oxime is in accordance with the stepwise intermolecular dehydrogenation and intramolecular torsion to the ring.

9.
Br J Nutr ; 114(1): 53-62, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26059215

ABSTRACT

Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets.


Subject(s)
Animals, Newborn/growth & development , Animals, Newborn/immunology , Diet/veterinary , Fetal Growth Retardation/immunology , Fetal Growth Retardation/physiopathology , Food Deprivation/physiology , Animal Nutritional Physiological Phenomena , Animals , Animals, Suckling/growth & development , Birth Weight , Disease Models, Animal , Female , Fetal Growth Retardation/pathology , Gene Expression , Ileum/chemistry , Ileum/metabolism , Ileum/pathology , Immunity/genetics , Immunity/physiology , Jejunum/enzymology , Methyltransferases/genetics , Nod2 Signaling Adaptor Protein/genetics , Pregnancy , RNA, Messenger/analysis , Swine , TNF Receptor-Associated Factor 6/genetics , Toll-Like Receptor 9/genetics , Weaning
10.
Anim Nutr ; 17: 123-133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766516

ABSTRACT

The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.

11.
Environ Sci Pollut Res Int ; 31(32): 44717-44729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954342

ABSTRACT

As a widely used pesticide, abamectin could be a threat to nontarget organisms. In this study, the toxic mechanism of abamectin on osmoregulation in Procambarus clarkii was explored for the first time. The results of this study showed that with increasing abamectin concentration, the membrane structures of gill filaments were damaged, with changes in ATPase activities, transporter contents, biogenic amine contents, and gene expression levels. The results of this study indicated that at 0.2 mg/L abamectin, ion diffusion could maintain osmoregulation. At 0.4 mg/L abamectin, passive transport was inhibited due to damage to the membrane structures of gill filaments, and active transport needed to be enhanced for osmoregulation. At 0.6 mg/L abamectin, the membrane structures of gill filaments were seriously damaged, and the expression level of osmoregulation-related genes decreased, but the organisms were still mobilizing various transporters, ATPases, and biogenic amines to address abamectin stress. This study provided a theoretical basis for further study of the effects of contaminations in aquatic environment on the health of crustaceans.


Subject(s)
Astacoidea , Ivermectin , Osmoregulation , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Astacoidea/drug effects , Astacoidea/physiology , Water Pollutants, Chemical/toxicity , Gills/drug effects
12.
J Nutr Biochem ; 124: 109534, 2024 02.
Article in English | MEDLINE | ID: mdl-37977404

ABSTRACT

Protein is the most important macro-nutrient when it comes to maximizing health, body composition, muscle growth, and recovery of body tissue. In recent years, it has been found that protein also plays an important role in metabolism and gut microbiota. This study was performed to investigate the effects of an isocaloric diet with different crude protein contents on the energy metabolism of Sprague-Dawley (SD) rats. Results revealed that compared with the 20% crude protein (CP; control) diet, the 38% CP diet improved serum parameters that are associated with dyslipidemia and glucose metabolic disorders in SD rats, whereas the 50% CP diet increased liver injury indicators and fatty acid synthesis-related genes and protein expression in the liver. Compared with the control diet, the 14% CP diet increased the abundance of colonic short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group and Ruminiclostridium_9) and promoted colonic microbial cysteine and methionine metabolism, the 38% CP diet up-regulated colonic microbial lysine biosynthesis and degradation pathways, and the 50% CP diet down-regulated colonic mucosal cholesterol metabolism. Furthermore, the increase of multiple colonic enteropathogenic bacteria in the 50% CP group was associated with higher palmitic acid and stearic acid concentrations in the colonic microbes and lower cholesterol and arachidonic acid concentrations in the colonic mucosa. These findings revealed that the 14% CP and 38% CP diets improved rats' energy metabolism, while the 50% CP diet was accompanied by lipid metabolism imbalances and an increase in the abundance of multiple enteropathogenic bacteria.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Rats, Sprague-Dawley , Diet , Fatty Acids, Volatile/pharmacology , Cholesterol/pharmacology , Energy Metabolism , Lipid Metabolism
13.
Anim Nutr ; 17: 297-311, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800731

ABSTRACT

Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.

14.
J Org Chem ; 78(21): 10692-704, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24063683

ABSTRACT

The intramolecular addition of hydrazone radicals to carbon-carbon double bonds was achieved by using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or DIAD (diisopropyl azodicarboxylate) as the hydrazone radical initiator as well as the carbon radical scavenger. Consequently, alkenes were difunctionalized to afford pyrazolines and tetrahydropyridazines via C-N forming 5-exo-trig and 6-exo-trig cyclizations, respectively, and allyls were trifunctionalized to afford pyrazolines via C-N forming tandem 1,5-H-shift/5-exo-trig cyclizations under metal-free neutral conditions.

15.
Animals (Basel) ; 13(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36978634

ABSTRACT

The aim of the study was to investigate the comparative effects of different combinations of sodium butyrate (SB), medium-chain fatty acids (MCFAs), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the reproductive performances of sows, as well as on the biochemical parameters, oxidative statuses, and intestinal health of the sucking piglets. A total of 30 sows were randomly allocated to five treatments: (1) control diet (CON); (2) CON with 1 g/kg of coated SB and 7.75 g/kg of coated MCFAs (SM); (3) CON with 1 g/kg of coated SB and 68.2 g/kg of coated n-3 PUFAs (SP); (4) CON with 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFAs (MP); (5) CON with 1 g/kg of coated SB, 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFA (SMP). The results showed that sows fed the SP, MP, and SMP diets had shorter weaning-to-estrus intervals than those fed the CON diet (p < 0.01). The piglets in the SM, SP, and MP groups showed higher increases in the plasma catalase and glutathione peroxidase activities than those of the CON group (p < 0.01). The diarrhea incidence of piglets in the SM, SP and SMP groups was lower than that of piglets in the CON group (p < 0.01). Additionally, the addition of SM, SP, MP, and SMP to the sow diets increased the contents of immunoglobulin A, immunoglobulin G, fat, and proteins in the colostrum (p < 0.01), as well as the plasma total superoxide dismutase activities (p < 0.01) in the suckling piglets, whereas it decreased the mRNA expressions of tumor necrosis factor-α, interleukin-1ß, and toll-like receptor 4 in the jejunum mucosa of the piglets. The relative abundances of Prevotella, Coprococcus, and Blautia in the colonic digesta of the piglets were increased in the SM group (p < 0.05), and the relative abundances of Faecalibacterium increased in the SMP group (p < 0.05), compared with the CON group. The relative abundances of Collinsella, Blautia, and Bulleidia in the MP group were higher than those in the CON group (p < 0.05). Collectively, dietary combinations of fatty acids with different chain lengths have positive effects on the growth performances and intestinal health of suckling piglets.

16.
Foods ; 12(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37107392

ABSTRACT

To understand the potential mechanisms of dietary protein on intestinal and host health, we studied the immunomodulatory effects of isocaloric diets with high or low crude protein (CP) contents on young adult Sprague Dawley (SD) rats. A total of 180 healthy male rats were randomly assigned to six groups (six replicate pens per treatment with five rats per pen) and fed diets with 10% CP, 14% CP, 20% CP (control), 28% CP, 38% CP, and 50% CP. Compared with the control diet, the rats fed the 14% CP diet significantly elevated lymphocyte cell counts in the peripheral blood and ileum, whereas the 38% CP diet significantly activated the expression of the TLR4/NF-κB signaling pathway in the colonic mucosa (p < 0.05). Moreover, the 50% CP diet reduced growth performance and fat deposition and increased the percentages of CD4+ T, B, and NK cells in the peripheral blood and the colonic mucosal expression of IL-8, TNF-α, and TGF-ß. Overall, rats fed the 14% CP diet enhanced host immunity by increasing the numbers of immune cells, and the immunological state and growth of SD rats were negatively impacted by the diet containing 50% CP.

17.
Food Funct ; 14(20): 9391-9406, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37791601

ABSTRACT

Epidemiological and experimental studies suggest that there is a strong correlation between maternal high-fat diet and fetal-placental development. The current study aims to investigate the effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles in a mouse model. Forty C57BL/6 female mice were randomly assigned to two groups, fed either a control (10% fat for energy) diet (CON) or a high-fat (60% fat for energy) diet (HFD) for 4 weeks before mating and throughout pregnancy, and were killed on day 19.5 of pregnancy. The serum glucose, total cholesterol and low-density lipoprotein, the glucolipid metabolism-related hormones, and the insulin resistance index were significantly increased. High-throughput sequencing showed that differentially expressed circRNAs (DE circRNAs) in the placenta can regulate various biological processes, cellular components, and molecular functions through various energy metabolism pathways, and mmu-let-7g-5p was found to target and bind to multiple DE circRNAs. In addition, this study also predicted that various circRNAs with protein coding functions can regulate maternal placental nutrient transport. In general, the ceRNA (circRNAs-miRNAs-mRNAs) regulatory network of maternal placental nutrient transport constructed in this study is of great significance for further understanding the effect of maternal nutrition on fetal growth in the future.


Subject(s)
Diet, High-Fat , Placenta , Animals , Female , Mice , Pregnancy , Diet, High-Fat/adverse effects , Fetal Development , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Nutrients , Placenta/metabolism , RNA, Circular/genetics
18.
Animals (Basel) ; 13(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37889691

ABSTRACT

Zinc oxide (ZnO) harms the environment and can potentially increase the number of drug-resistant bacteria. Therefore, there is an urgent need to find safe and effective alternatives to improve gut health and reduce the incidence of diarrhea in weaned piglets. This study conducted an antibacterial test of ZnO, antibacterial peptides (AMPs), and tannic acid (TA) in vitro. Thirty piglets were randomly allotted to one of the following three dietary treatments: ZnO (2000 mg/kg ZnO diet), AMPs (700 mg/kg AMPs diet), and TA (1000 mg/kg TA diet). The results showed that the minimum inhibitory concentrations of ZnO and TA against Escherichia coli and Salmonella were lower than those of AMPs, and the minimum inhibitory concentrations of ZnO, AMPs, and TA against Staphylococcus aureus were the same. Compared to ZnO, AMPs increased the digestibility of dry, organic matter and the crude fat. Additionally, TA significantly (p < 0.05) increased the digestibility of dry and organic matter. On experimental day 14, the plasma interleukin-6 (IL-6) content of piglets supplemented with AMPs and TA was increased significantly (p < 0.05). On experimental day 28, alanine aminotransferase activity in the plasma of weaned piglets in the ZnO and TA groups was significantly (p < 0.05) higher than in piglets in the AMPs group. The levels of plasma IL-6 and immunoglobulin M (IgM) were significantly higher (p < 0.05) in the ZnO and AMPs groups than in the TA group. On experimental days 14 and 28, no significant differences were observed in the antioxidant capacity among the three experimental groups. Intestinal microbial diversity analysis showed that the Chao1 and ACE indices of piglets in the AMPs group were significantly higher (p < 0.05) than those in the ZnO and TA groups. At the genus level, the relative abundance of Treponema_2 was higher in the feces of piglets fed a diet supplemented with TA than in those fed diet supplemented with ZnO (p < 0.05). The relative abundance of Lachnospiraceae was higher in the feces of piglets fed a diet supplemented with AMPs than in those fed diet supplemented with ZnO or TA. Overall, AMPs and TA could be added to feed as substitutes for ZnO to reduce diarrhea, improve nutrient digestibility and immunity, and increase the abundance of beneficial intestinal bacteria in weaned piglets.

19.
J Cancer ; 13(1): 34-50, 2022.
Article in English | MEDLINE | ID: mdl-34976169

ABSTRACT

Objective: To investigate the expression of hsa_circ_0074298 (circular RNA) and the molecular mechanism that promotes tumor growth and enhances the chemoresistance of pancreatic cancer. Methods: Real-time reverse transcription-PCR was used to detect hsa_circ_0074298 expression in pancreatic cancer. The intracellular localization of hsa_circ_0074298 was determined by RNA in situ hybridization. The CCK8 method, colony formation assay, Transwell assay, and flow cytometry were used to evaluate the effects of hsa_circ_0074298 on the proliferation, migration, invasion, cell cycle, apoptosis of pancreatic cancer cells. Bioinformatics analysis and dual luciferase assays were employed to detect the association of hsa_circ_0074298 and miR-519d and the binding of miR-519d to the target gene SMOC2. A subcutaneous xenograft model was established to observe the effect of hsa_circ_0074298 in vivo. Results: The hsa_circ_0074298 was mainly localized in the cytoplasm. Hsa_circ_0074298 was highly expressed in pancreatic cancer tissues and cell lines. The expression of hsa_circ_0074298 was significantly correlated with pancreatic cancer tumor size, lymph node metastasis, and pathological grade. hsa_circ_0074298 could sponge miR-519, and miR-519d bound to SMOC2. Downregulation of hsa_circ_0074298 expression significantly inhibited cell proliferation, migration, invasion, colony forming ability and promoted cell cycle arrest, apoptosis and chemo-resistance of pancreatic cancer in vitro and vivo. However, the effects could be reversed by a miR-519d inhibitor or SMOC2 overexpression. Conclusion: By sponging miR-519 and targeting SMOC2, hsa_circ_0074298 promotes the growth and metastasis of pancreatic cancer and increases the resistance of pancreatic cancer cells to gemcitabine.

20.
J Agric Food Chem ; 70(6): 1840-1851, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129337

ABSTRACT

Adequate dietary fiber intake during gestation is critical for maternal-fetal health. This experiment aims to uncover the impacts of maternal long-term intake of inulin on fetal development and its underlying mechanism. Eighty female Sprague-Dawley rats were randomly assigned to two groups receiving either a fiber-free diet or an inulin diet (inulin) for three parities. On the 19th day of pregnancy in the third parity, blood, intestinal, placental, and colonic digesta samples were collected. Results showed that maternal intake of inulin significantly decreased the within-litter birth weight variation in parities 2 and 3. Inulin intake modified the gut microbiome profiles and elevated the colonic contents of short chain fatty acids (propionate and butyrate). Inulin decreased the serotonin (5-HT) concentration in the colon, whereas it increased the 5-HT concentrations in serum and placenta and the number of 5-HT+ enterochromaffin cells in the colon. The protein expression of melatonin-synthesizing enzyme (arylalkylamine N-acetyltransferase) and the melatonin concentration in the placenta were also increased by inulin. Inulin improved the placental redox status and nutrient transport. These findings indicated that maternal long-term intake of inulin improves fetal development by altering the intestinal microbiota and related metabolites in rats.


Subject(s)
Gastrointestinal Microbiome , Inulin , Animals , Female , Fetal Development , Placenta , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL