Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Curr Top Microbiol Immunol ; 444: 157-184, 2023.
Article in English | MEDLINE | ID: mdl-38231218

ABSTRACT

Gastric cancer remains an important global health burden. Helicobacter pylori is the major etiological factor in gastric cancer, infecting the stomach of almost half of the population worldwide. Recent progress in microbiome research offered a new perspective on the complexity of the microbial communities of the stomach. Still, the role of the microbiome of the stomach beyond H. pylori in gastric carcinogenesis is not well understood and requires deeper investigation. The gastric bacterial communities of gastric cancer patients are distinct from those of patients without cancer, but the microbial alterations that occur along the process of gastric carcinogenesis, and the mechanisms through which microorganisms influence cancer progression still need to be clarified. Except for Epstein-Barr virus, the potential significance of the virome and of the mycobiome in gastric cancer have received less attention. This chapter updates the current knowledge regarding the gastric microbiome, including bacteria, viruses, and fungi, within the context of H. pylori-mediated carcinogenesis. It also reviews the possible roles of the local gastric microbiota, as well as the microbial communities of the oral and gut ecosystems, as biomarkers for gastric cancer detection. Finally, it discusses future perspectives and acknowledges limitations in the area of microbiome research in the gastric cancer setting, to which further research efforts should be directed. These will be fundamental not only to increase our current understanding of host-microbial interactions but also to facilitate translation of the findings into innovative preventive, diagnostic, and therapeutic strategies to decrease the global burden of gastric cancer.


Subject(s)
Epstein-Barr Virus Infections , Helicobacter pylori , Microbiota , Stomach Neoplasms , Humans , Stomach Neoplasms/etiology , Helicobacter pylori/genetics , Herpesvirus 4, Human/genetics , Carcinogenesis
2.
Int J Mol Sci ; 21(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046034

ABSTRACT

Large numbers of well-characterized clinical samples are fundamental to establish relevant associations between the microbiota and disease. Formalin-fixed and paraffin-embedded (FFPE) tissues are routinely used and are widely available clinical materials. Since current approaches to study the microbiota are based on next-generation sequencing (NGS) targeting the bacterial 16S rRNA gene, our aim was to evaluate the feasibility of FFPE gastric tissues for NGS-based microbiota characterization. Analysis of sequencing data revealed the presence of bacteria in the paraffin control. After the subtraction of the operational taxonomic units (OTUs) present in the paraffin control to the FFPE tissue sample dataset, we evaluated the microbiota profiles between paired FFPE and frozen gastric tissues, and between different times of archiving. Compared with frozen gastric tissues, we detected a lower number of OTUs in the microbiota of paired FFPE tissues, regardless of the time of archiving. No major differences in microbial diversity were identified, but taxonomic variation in the relative abundance of phyla and orders was observed between the two preservation methods. This variation was also evident in each case and throughout the times of FFPE archiving. The use of FFPE tissues for NGS-based microbiota characterization should be considered carefully, as biases can be introduced by the embedding process and the time of tissue archiving.


Subject(s)
DNA Barcoding, Taxonomic/methods , High-Throughput Nucleotide Sequencing/methods , Microbiota , Paraffin Embedding/methods , Stomach/microbiology , Tissue Fixation/methods , Fixatives/adverse effects , Formaldehyde/adverse effects , Genome, Bacterial , Humans , RNA, Ribosomal, 16S/genetics , Stomach/cytology
3.
Adv Exp Med Biol ; 1149: 195-210, 2019.
Article in English | MEDLINE | ID: mdl-31016631

ABSTRACT

After a long period during which the stomach was considered as an organ where microorganisms could not thrive, Helicobacter pylori was isolated in vitro from gastric biopsies, revolutionising the fields of Microbiology and Gastroenterology. Since then, and with the introduction of high-throughput sequencing technologies that allowed deep characterization of microbial communities, a growing body of knowledge has shown that the stomach contains a diverse microbial community, which is different from that of the oral cavity and of the intestine. Gastric cancer is a heterogeneous disease that is the end result of a cascade of events arising in a small fraction of patients colonized with H. pylori. In addition to H. pylori infection and to multiple host and environmental factors that influence disease development, alterations to the composition and function of the normal gastric microbiome, also known as dysbiosis, may also contribute to malignancy. Chronic inflammation of the mucosa in response to H. pylori may alter the gastric environment, paving the way to the growth of a dysbiotic gastric bacterial community. This dysbiotic microbiome may promote the development of gastric cancer by sustaining inflammation and/or inducing genotoxicity. This chapter summarizes what is known about the gastric microbiome in the context of H. pylori-associated gastric cancer, introducing the emerging dimension of the microbiome into the pathogenesis of this highly incident and deadly disease.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Dysbiosis , Gastric Mucosa/microbiology , Gastrointestinal Microbiome/physiology , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Humans
4.
Gut ; 67(2): 226-236, 2018 02.
Article in English | MEDLINE | ID: mdl-29102920

ABSTRACT

OBJECTIVE: Gastric carcinoma development is triggered by Helicobacter pylori. Chronic H. pylori infection leads to reduced acid secretion, which may allow the growth of a different gastric bacterial community. This change in the microbiome may increase aggression to the gastric mucosa and contribute to malignancy. Our aim was to evaluate the composition of the gastric microbiota in chronic gastritis and in gastric carcinoma. DESIGN: The gastric microbiota was retrospectively investigated in 54 patients with gastric carcinoma and 81 patients with chronic gastritis by 16S rRNA gene profiling, using next-generation sequencing. Differences in microbial composition of the two patient groups were assessed using linear discriminant analysis effect size. Associations between the most relevant taxa and clinical diagnosis were validated by real-time quantitative PCR. Predictive functional profiling of microbial communities was obtained with PICRUSt. RESULTS: The gastric carcinoma microbiota was characterised by reduced microbial diversity, by decreased abundance of Helicobacter and by the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis has excellent capacity to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma. The major observations were confirmed in validation cohorts from different geographic origins. CONCLUSIONS: Detailed analysis of the gastric microbiota revealed for the first time that patients with gastric carcinoma exhibit a dysbiotic microbial community with genotoxic potential, which is distinct from that of patients with chronic gastritis.


Subject(s)
Bacteria , Carcinoma/microbiology , Dysbiosis/microbiology , Gastritis/microbiology , Gastrointestinal Microbiome , Helicobacter Infections/microbiology , Stomach Neoplasms/microbiology , Stomach/microbiology , Adult , Aged , Bacteria/genetics , Bacteria/metabolism , Chronic Disease , Female , Gastric Mucosa/microbiology , Helicobacter pylori , Humans , Male , Middle Aged , Nitrosation , RNA, Ribosomal, 16S/analysis , Retrospective Studies
5.
Helicobacter ; 22 Suppl 12017 Sep.
Article in English | MEDLINE | ID: mdl-28891129

ABSTRACT

Gastric cancer is one of the most incident and deadliest malignancies in the world. Gastric cancer is a heterogeneous disease and the end point of a long and multistep process, which results from the stepwise accumulation of numerous (epi)genetic alterations, leading to dysregulation of oncogenic and tumor suppressor pathways. Gastric cancer stem cells have emerged as fundamental players in cancer development and as contributors to gastric cancer heterogeneity. For this special issue, we will report last year's update on the gastric cancer molecular classification, and in particular address the gastric cancer groups who could benefit from immune checkpoint therapy. We will also review the latest advances on gastric cancer stem cells, their properties as gastric cancer markers and therapeutic targets, and associated signaling pathways. The understanding of the molecular basis underlying gastric cancer heterogeneity and of the role played by gastric cancer stem cells in cancer development and heterogeneity is of major significance, not only for identifying novel targets for cancer prevention and treatment, but also for clinical management and patient stratification for targeted therapies.


Subject(s)
Carcinogenesis , Neoplastic Stem Cells/physiology , Stomach Neoplasms/pathology , Stomach Neoplasms/physiopathology , Cell Proliferation , Humans , Signal Transduction
6.
Gut Microbes ; 16(1): 2323235, 2024.
Article in English | MEDLINE | ID: mdl-38425025

ABSTRACT

The high background of host RNA poses a major challenge to metatranscriptome analysis of human samples. Hence, metatranscriptomics has been mainly applied to microbe-rich samples, while its application in human tissues with low ratio of microbial to host cells has yet to be explored. Since there is no computational workflow specifically designed for the taxonomic and functional analysis of this type of samples, we propose an effective metatranscriptomics strategy to accurately characterize the microbiome in human tissues with a low ratio of microbial to host content. We experimentally generated synthetic samples with well-characterized bacterial and host cell compositions, and mimicking human samples with high and low microbial loads. These synthetic samples were used for optimizing and establishing the workflow in a controlled setting. Our results show that the integration of the taxonomic analysis of optimized Kraken 2/Bracken with the functional analysis of HUMAnN 3 in samples with low microbial content, enables the accurate identification of a large number of microbial species with a low false-positive rate, while improving the detection of microbial functions. The effectiveness of our metatranscriptomics workflow was demonstrated in synthetic samples, simulated datasets, and most importantly, human gastric tissue specimens, thus providing a proof of concept for its applicability on mucosal tissues of the gastrointestinal tract. The use of an accurate and reliable metatranscriptomics approach for human tissues with low microbial content will expand our understanding of the functional activity of the mucosal microbiome, uncovering critical interactions between the microbiome and the host in health and disease.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Biomass , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Microbiota/genetics , Bacteria/genetics
7.
Cancers (Basel) ; 15(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37174095

ABSTRACT

Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.

8.
Cancers (Basel) ; 14(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35884445

ABSTRACT

The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual's local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and ß-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.

9.
Article in English | MEDLINE | ID: mdl-33975676

ABSTRACT

Colonization of the stomach by Helicobacter pylori is the trigger for a series of gastric mucosal changes that culminate in gastric cancer. Infection with this bacterium is considered the major risk factor for this malignancy. The introduction of high-throughput sequencing technologies coupled to advanced computational pipelines offered an improved understanding of the microbiome, and it is now currently accepted that, besides H. pylori, the stomach harbours a complex microbial community. While it is well established that H. pylori plays a central role in gastric carcinogenesis, the significance of the non-H. pylori microbiota is yet to be clarified. This review will address the state of the art on the relationship between the gastric microbiota and gastric cancer development, and identify areas where additional research is needed before translating microbiome research into preventive and therapeutic strategies to reduce gastric cancer burden.


Subject(s)
Helicobacter Infections/physiopathology , Microbiota/physiology , Stomach Neoplasms/physiopathology , Humans
10.
Front Microbiol ; 10: 1277, 2019.
Article in English | MEDLINE | ID: mdl-31244801

ABSTRACT

The amount of host DNA poses a major challenge to metagenome analysis. However, there is no guidance on the levels of host DNA, nor on the depth of sequencing needed to acquire meaningful information from whole metagenome sequencing (WMS). Here, we evaluated the impact of a wide range of amounts of host DNA and sequencing depths on microbiome taxonomic profiling using WMS. Synthetic samples with increasing levels of host DNA were created by spiking DNA of a mock bacterial community, with DNA from a mouse-derived cell line. Taxonomic analysis revealed that increasing proportions of host DNA led to decreased sensitivity in detecting very low and low abundant species. Reduction of sequencing depth had major impact on the sensitivity of WMS for profiling samples with 90% host DNA, increasing the number of undetected species. Finally, analysis of simulated datasets with fixed depth of 10 million reads confirmed that microbiome profiling becomes more inaccurate as the level of host DNA increases in a sample. In conclusion, samples with high amounts of host DNA coupled with reduced sequencing depths, decrease WMS coverage for characterization of the microbiome. This study highlights the importance of carefully considering these aspects in the design of WMS experiments to maximize microbiome analyses.

SELECTION OF CITATIONS
SEARCH DETAIL