Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 21(10): 1293-1301, 2020 10.
Article in English | MEDLINE | ID: mdl-32807944

ABSTRACT

The SARS-CoV-2 virus emerged in December 2019 and has caused a worldwide pandemic due to the lack of any pre-existing immunity. Accurate serology testing is urgently needed to help diagnose infection, determine past exposure of populations and assess the response to a future vaccine. The landscape of antibody responses to SARS-CoV-2 is unknown. In this study, we utilized the luciferase immunoprecipitation system to assess the antibody responses to 15 different SARS-CoV-2 antigens in patients with COVID-19. We identified new targets of the immune response to SARS-CoV-2 and show that nucleocapsid, open reading frame (ORF)8 and ORF3b elicit the strongest specific antibody responses. ORF8 and ORF3b antibodies, taken together as a cluster of points, identified 96.5% of COVID-19 samples at early and late time points of disease with 99.5% specificity. Our findings could be used to develop second-generation diagnostic tests to improve serological assays for COVID-19 and are important in understanding pathogenicity.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Viral Proteins/immunology , Adult , Aged , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19 , COVID-19 Testing , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Hong Kong , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Sensitivity and Specificity , Time Factors
3.
Nature ; 583(7818): 834-838, 2020 07.
Article in English | MEDLINE | ID: mdl-32408338

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Mesocricetus/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Aerosols , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Duodenum/virology , Fomites/virology , Housing, Animal , Kidney/virology , Male , Mesocricetus/immunology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/immunology , RNA, Viral/analysis , SARS-CoV-2 , Viral Load , Weight Loss
4.
Nature ; 586(7831): 776-778, 2020 10.
Article in English | MEDLINE | ID: mdl-32408337

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Wuhan in December 2019 and caused coronavirus disease 2019 (COVID-19)1,2. In 2003, the closely related SARS-CoV had been detected in domestic cats and a dog3. However, little is known about the susceptibility of domestic pet mammals to SARS-CoV-2. Here, using PCR with reverse transcription, serology, sequencing the viral genome and virus isolation, we show that 2 out of 15 dogs from households with confirmed human cases of COVID-19 in Hong Kong were found to be infected with SARS-CoV-2. SARS-CoV-2 RNA was detected in five nasal swabs collected over a 13-day period from a 17-year-old neutered male Pomeranian. A 2.5-year-old male German shepherd was positive for SARS-CoV-2 RNA on two occasions and virus was isolated from nasal and oral swabs. Antibody responses were detected in both dogs using plaque-reduction-neutralization assays. Viral genetic sequences of viruses from the two dogs were identical to the virus detected in the respective human cases. The dogs remained asymptomatic during quarantine. The evidence suggests that these are instances of human-to-animal transmission of SARS-CoV-2. It is unclear whether infected dogs can transmit the virus to other animals or back to humans.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Dog Diseases/transmission , Dog Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Zoonoses/transmission , Zoonoses/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Dogs , Female , Hong Kong/epidemiology , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , SARS-CoV-2 , Time Factors
5.
Proc Natl Acad Sci U S A ; 120(33): e2304750120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549267

ABSTRACT

There has long been controversy over the potential for asymptomatic cases of the influenza virus to have the capacity for onward transmission, but recognition of asymptomatic transmission of COVID-19 stimulates further research into this topic. Here, we develop a Bayesian methodology to analyze detailed data from a large cohort of 727 households and 2515 individuals in the 2009 pandemic influenza A(H1N1) outbreak in Hong Kong to characterize household transmission dynamics and to estimate the relative infectiousness of asymptomatic versus symptomatic influenza cases. The posterior probability that asymptomatic cases [36% of cases; 95% credible interval (CrI): 32%, 40%] are less infectious than symptomatic cases is 0.82, with estimated relative infectiousness 0.57 (95% CrI: 0.11, 1.54). More data are required to strengthen our understanding of the contribution of asymptomatic cases to the spread of influenza.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34099577

ABSTRACT

Coronaviruses are pathogens of pandemic potential. Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. More than 70% of MERS-CoV-infected dromedaries are found in East, North, and West Africa, but zoonotic MERS disease is only reported from the Arabian Peninsula. We compared viral replication competence of clade A and B viruses from the Arabian Peninsula with genetically diverse clade C viruses found in East (Egypt, Kenya, and Ethiopia), North (Morocco), and West (Nigeria and Burkina Faso) Africa. Viruses from Africa had lower replication competence in ex vivo cultures of the human lung and in lungs of experimentally infected human-DPP4 (hDPP4) knockin mice. We used lentivirus pseudotypes expressing MERS-CoV spike from Saudi Arabian clade A prototype strain (EMC) or African clade C1.1 viruses and demonstrated that clade C1.1 spike was associated with reduced virus entry into the respiratory epithelial cell line Calu-3. Isogenic EMC viruses with spike protein from EMC or clade C1.1 generated by reverse genetics showed that the clade C1.1 spike was associated with reduced virus replication competence in Calu-3 cells in vitro, in ex vivo human bronchus, and in lungs of hDPP4 knockin mice in vivo. These findings may explain why zoonotic MERS disease has not been reported from Africa so far, despite exposure to and infection with MERS-CoV.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , Zoonoses/virology , Africa , Animals , Arabia , Cell Line , Dipeptidyl Peptidase 4/metabolism , Gene Knock-In Techniques , Humans , Kinetics , Middle East Respiratory Syndrome Coronavirus/physiology , Phenotype , Phylogeny , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/physiology
7.
J Infect Dis ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950884

ABSTRACT

BACKGROUND: Annual influenza vaccination is recommended for older adults but repeated vaccination with standard-dose influenza vaccine has been linked to reduced immunogenicity and effectiveness, especially against A(H3N2) viruses. METHODS: Community-dwelling Hong Kong adults aged 65-82 years were randomly allocated to receive 2017/18 standard-dose quadrivalent, MF59-adjuvanted trivalent, high-dose trivalent, and recombinant-HA quadrivalent vaccination. Antibody response to unchanged A(H3N2) vaccine antigen was compared among participants with and without self-reported prior year (2016/17) standard-dose vaccination. RESULTS: Mean fold rise (MFR) in antibody titers from Day 0 to Day 30 by hemagglutination inhibition and virus microneutralization assays were lower among 2017/18 standard-dose and enhanced vaccine recipients with (range, 1.7-3.0) vs. without (range, 4.3-14.3) prior 2016/17 vaccination. MFR was significantly reduced by about one half to four fifths for previously vaccinated recipients of standard-dose and all three enhanced vaccines (ß range, 0.21-0.48). Among prior-year vaccinated older adults, enhanced vaccines induced higher 1.43 to 2.39-fold geometric mean titers and 1.28 to 1.74-fold MFR vs. standard-dose vaccine by microneutralization assay. CONCLUSIONS: In the context of unchanged A(H3N2) vaccine strain, prior-year vaccination was associated with reduced antibody response among both standard-dose and enhanced influenza vaccine recipients. Enhanced vaccines improved antibody response among older adults with prior-year standard-dose vaccination.

8.
J Infect Dis ; 226(6): 1022-1026, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35380689

ABSTRACT

We explored the potential for a biphasic pattern in waning of antibody titers after influenza vaccination. We collected blood samples in a randomized controlled trial of influenza vaccination in children and tested them with hemagglutination inhibition assays for influenza A(H3N2) and influenza B/Victoria lineage. Using piecewise log-linear mixed-effects models, we found evidence for a faster initial waning of antibody titers for the first 1-2 years after vaccination and then slower longer-term declines. Children with higher postvaccination titers had faster antibody decay.


Subject(s)
Influenza Vaccines , Influenza, Human , Antibodies, Viral , Child , Hemagglutination , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/prevention & control , Vaccination , Vaccines, Inactivated
9.
Emerg Infect Dis ; 28(5): 977-985, 2022 05.
Article in English | MEDLINE | ID: mdl-35447069

ABSTRACT

Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence against 5 swine influenza viruses circulating in Hong Kong and Guangzhou in China. Using hemagglutinin inhibition seroprevalence and titers, we modeled the effect of population immunity on the basic reproduction number (R0) if each virus were to become transmissible among humans. Among 353 individual serum samples, we reported low seroprevalence for triple-reassortant H1N2 and Eurasian avian-like H1N1 influenza viruses, which would reduce R0 by only 18%-20%. The smallest R0 needed to cause a pandemic was 1.22-1.24, meaning existing population immunity would be insufficient to block the spread of these H1N1 or H1N2 variants. For human-origin H3N2, existing population immunity could suppress R0 by 47%, thus reducing pandemic risk.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Hemagglutinins , Humans , Influenza A Virus, H1N2 Subtype , Influenza A Virus, H3N2 Subtype , Reassortant Viruses/physiology , Seroepidemiologic Studies , Swine , Swine Diseases/epidemiology , Zoonoses
10.
J Infect Dis ; 224(5): 821-830, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33395484

ABSTRACT

BACKGROUND: Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. METHODS: We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. RESULTS: There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. CONCLUSIONS: Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.


Subject(s)
COVID-19/virology , Influenza A virus/physiology , Lung/virology , Nasal Cavity/virology , SARS-CoV-2/physiology , Trachea/virology , Viral Tropism/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Dogs , Humans , Influenza, Human/metabolism , Influenza, Human/virology , Lung/metabolism , Nasal Cavity/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Trachea/metabolism
11.
Emerg Infect Dis ; 27(12): 3052-3062, 2021 12.
Article in English | MEDLINE | ID: mdl-34808078

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) infects humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. Although some mutations found in camel-derived MERS-CoV strains have been characterized, most natural variation found across MERS-CoV isolates remains unstudied. We report on the environmental stability, replication kinetics, and pathogenicity of several diverse isolates of MERS-CoV, as well as isolates of severe acute respiratory syndrome coronavirus 2, to serve as a basis of comparison with other stability studies. Although most MERS-CoV isolates had similar stability and pathogenicity in our experiments, the camel-derived isolate C/KSA/13 had reduced surface stability, and another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that although betacoronaviruses might have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the need for continual global viral surveillance.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Aerosols , Animals , Camelus , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2 , Virulence , Zoonoses
12.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: mdl-33139421

ABSTRACT

Surrogate neutralization assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be done without biosafety level 3 containment and in multiple species are desirable. We evaluate a recently developed surrogate virus neutralization test (sVNT) in comparison to 90% plaque reduction neutralization tests (PRNT90) in human, canine, cat, and hamster sera. With PRNT90 as the reference, sVNT had sensitivity of 98.9% and specificity of 98.8%. Using a panel of immune sera corresponding to other coronaviruses, we confirm the lack of cross-reactivity to other coronaviruses in SARS-CoV-2 sVNT and PRNT90, except for cross-reactivity to SARS-CoV-1 in sVNT.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/isolation & purification , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/pathology , Cats , Cricetinae , Cross Reactions , Dogs , Female , Humans , Immune Sera/immunology , Male , Neutralization Tests/standards , SARS-CoV-2/immunology , Sensitivity and Specificity
13.
Proc Natl Acad Sci U S A ; 115(12): 3144-3149, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507189

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface.


Subject(s)
Camelus/virology , Genetic Variation , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Africa , Animals , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Female , Humans , Lung/virology , Mice, Inbred C57BL , Phylogeny , Virus Replication , Zoonoses/virology
14.
J Infect Dis ; 221(1): 33-41, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31282541

ABSTRACT

BACKGROUND: Immune responses to influenza vaccination can be weaker in older adults than in other age groups. We hypothesized that antibody responses would be particularly weak among repeat vaccinees when the current and prior season vaccine components are the same. METHODS: An observational study was conducted among 827 older adults (aged ≥75 years) in Hong Kong. Serum samples were collected immediately before and 1 month after receipt of the 2015-2016 quadrivalent inactivated influenza vaccine. We measured antibody titers with the hemagglutination inhibition assay and compared the mean fold rise from prevaccination to postvaccination titers and the proportions with postvaccination titers ≥40 or ≥160. RESULTS: Participants who reported receipt of vaccination during either of the previous 2 years had a lower mean fold rise against all strains than with those who did not. Mean fold rises for A(H3N2) and B/Yamagata were particularly weak after repeated vaccination with the same vaccine strain, but we did not generally find significant differences in the proportions of participants with postvaccination titers ≥40 and ≥160. CONCLUSIONS: Overall, we found that reduced antibody responses in repeat vaccinees were particularly reduced among older adults who had received vaccination against the same strains in preceding years.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/immunology , Age Factors , Aged , Aged, 80 and over , Female , Hemagglutination , Hong Kong , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Male , Vaccination
15.
J Infect Dis ; 222(8): 1383-1391, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32407535

ABSTRACT

BACKGROUND: We analyzed data from a randomized controlled trial on the reactogenicity of 3 enhanced influenza vaccines compared with standard-dose (SD) inactivated influenza vaccine. METHODS: We enrolled community-dwelling older adults in Hong Kong, and we randomly allocated them to receive 2017-2018 northern hemisphere formulations of SD vaccine (FluQuadri; Sanofi Pasteur), MF59-adjuvanted vaccine (FLUAD; Seqirus), high-dose (HD) vaccine (Fluzone High-Dose; Sanofi Pasteur), or recombinant hemagglutinin vaccine (Flublok; Sanofi Pasteur). Local and systemic reactions were evaluated at days 1, 3, 7, and 14 after vaccination. RESULTS: Reported reactions were generally mild and short-lived. Systemic reactions occurred in similar proportions of participants by vaccine. Some local reactions were slightly more frequently reported among recipients of the MF59-adjuvanted and HD vaccines than among SD vaccine recipients. Participants reporting feverishness 1 day after vaccination had mean fold rises in postvaccination hemagglutination inhibition titers that were 1.85-fold higher (95% confidence interval, 1.01-3.38) for A(H1N1) than in those who did not report feverishness. CONCLUSIONS: Some acute local reactions were more frequent after vaccination with MF59-adjuvanted and HD influenza vaccines, compared with SD inactivated influenza vaccine, whereas systemic symptoms occurred at similar frequencies in all groups. The association between feverishness and immunogenicity should be further investigated in a larger population. CLINICAL TRIALS REGISTRATION: NCT03330132.


Subject(s)
Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Hemagglutination Inhibition Tests , Hong Kong/epidemiology , Humans , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Betainfluenzavirus/immunology , Male , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
16.
Clin Infect Dis ; 71(7): 1741-1748, 2020 10 23.
Article in English | MEDLINE | ID: mdl-31665236

ABSTRACT

BACKGROUND: Studies that correlate maternal antibodies with protection from influenza A or B virus infection in young infants in areas with prolonged influenza circulation are lacking. METHODS: We conducted a prospective, observational study to evaluate the effects of maternally transferred antibodies against influenza A and B viruses against laboratory-confirmed influenza in a cohort born over 24 months. Cord blood samples were retrieved at birth and infants were actively followed for the first 6 months of life. Nasal swabs were collected and tested for influenza A and B by reverse transcriptase-polymerase chain reaction whenever an illness episode was identified. Cord blood samples were tested by the hemagglutination inhibition (HAI) assay to viruses that circulated during the follow-up period. RESULTS: 1162 infants were born to 1140 recruited women: 1092 (94%) infants completed 6 months of follow-up. Proportions of cord blood with HAI antibody titers ≥40 against A(H1N1), A(H3N2), B/Victoria, and B/Yamagata were 31%, 24%, 31%, and 54%, respectively. Only 4% of women had maternal influenza vaccination. Cord blood antigen-specific HAI titers ≥40 were found to correlate with protection from infection only for influenza B/Yamagata. No influenza B virus infection occurred in infants ≤60 days old. Proportional hazards analysis showed that a cord blood HAI titer of 40 was associated with 83% (95% confidence interval, 44-95%) reduction in the risk of influenza B/Yamagata infections compared with a cord blood titer <10. CONCLUSIONS: We documented that maternal immunity against influenza B/Yamagata was conferred to infants within the first 6 months of life.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Viral , Female , Fetal Blood , Hemagglutination Inhibition Tests , Humans , Infant , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/prevention & control , Laboratories , Pregnancy , Prospective Studies
17.
Clin Infect Dis ; 71(7): 1704-1714, 2020 10 23.
Article in English | MEDLINE | ID: mdl-31828291

ABSTRACT

BACKGROUND: Enhanced influenza vaccines may improve protection for older adults, but comparative immunogenicity data are limited. Our objective was to examine immune responses to enhanced influenza vaccines, compared to standard-dose vaccines, in community-dwelling older adults. METHODS: Community-dwelling older adults aged 65-82 years in Hong Kong were randomly allocated (October 2017-January 2018) to receive 2017-2018 Northern hemisphere formulations of a standard-dose quadrivalent vaccine, MF59-adjuvanted trivalent vaccine, high-dose trivalent vaccine, or recombinant-hemagglutinin (rHA) quadrivalent vaccine. Sera collected from 200 recipients of each vaccine before and at 30-days postvaccination were assessed for antibodies to egg-propagated vaccine strains by hemagglutination inhibition (HAI) and to cell-propagated A/Hong Kong/4801/2014(H3N2) virus by microneutralization (MN). Influenza-specific CD4+ and CD8+ T cell responses were assessed in 20 participants per group. RESULTS: Mean fold rises (MFR) in HAI titers to egg-propagated A(H1N1) and A(H3N2) and the MFR in MN to cell-propagated A(H3N2) were statistically significantly higher in the enhanced vaccine groups, compared to the standard-dose vaccine. The MFR in MN to cell-propagated A(H3N2) was highest among rHA recipients (4.7), followed by high-dose (3.4) and MF59-adjuvanted (2.9) recipients, compared to standard-dose recipients (2.3). Similarly, the ratio of postvaccination MN titers among rHA recipients to cell-propagated A(H3N2) recipients was 2.57-fold higher than the standard-dose vaccine, which was statistically higher than the high-dose (1.33-fold) and MF59-adjuvanted (1.43-fold) recipient ratios. Enhanced vaccines also resulted in the boosting of T-cell responses. CONCLUSIONS: In this head-to-head comparison, older adults receiving enhanced vaccines showed improved humoral and cell-mediated immune responses, compared to standard-dose vaccine recipients. CLINICAL TRIALS REGISTRATION: NCT03330132.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Aged , Aged, 80 and over , Antibodies, Viral , Hemagglutination Inhibition Tests , Humans , Immunogenicity, Vaccine , Influenza A Virus, H3N2 Subtype , Influenza, Human/prevention & control , Squalene
18.
Emerg Infect Dis ; 26(12): 3071-3074, 2020 12.
Article in English | MEDLINE | ID: mdl-32938527

ABSTRACT

We tested 50 cats from coronavirus disease households or close contacts in Hong Kong, China, for severe acute respiratory syndrome coronavirus 2 RNA in respiratory and fecal samples. We found 6 cases of apparent human-to-feline transmission involving healthy cats. Virus genomes sequenced from 1 cat and its owner were identical.


Subject(s)
COVID-19/veterinary , Cats , Pets , Animals , COVID-19/transmission , Family Characteristics , Hong Kong , Humans , Pandemics , Quarantine , SARS-CoV-2/genetics , Viral Zoonoses
19.
Emerg Infect Dis ; 26(11): 2701-2704, 2020 11.
Article in English | MEDLINE | ID: mdl-32749957

ABSTRACT

We investigated 68 respiratory specimens from 35 coronavirus disease patients in Hong Kong, of whom 32 had mild disease. We found that severe acute respiratory syndrome coronavirus 2 and subgenomic RNA were rarely detectable beyond 8 days after onset of illness. However, virus RNA was detectable for many weeks by reverse transcription PCR.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA, Viral/analysis , Respiratory System/virology , Severity of Illness Index , Adult , Aged , COVID-19 , Female , Hong Kong , Humans , Male , Middle Aged , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
20.
Emerg Infect Dis ; 26(1): 173-176, 2020 01.
Article in English | MEDLINE | ID: mdl-31855544

ABSTRACT

We examined nasal swabs and serum samples acquired from dromedary camels in Nigeria and Ethiopia during 2015-2017 for evidence of influenza virus infection. We detected antibodies against influenza A(H1N1) and A(H3N2) viruses and isolated an influenza A(H1N1)pdm09-like virus from a camel in Nigeria. Influenza surveillance in dromedary camels is needed.


Subject(s)
Camelus/virology , Influenza A virus , Orthomyxoviridae Infections/veterinary , Animals , Ethiopia/epidemiology , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Nigeria/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL