Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(6): 1420-1431.e17, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849373

ABSTRACT

Respiratory syncytial virus (RSV) is a worldwide public health concern for which no vaccine is available. Elucidation of the prefusion structure of the RSV F glycoprotein and its identification as the main target of neutralizing antibodies have provided new opportunities for development of an effective vaccine. Here, we describe the structure-based design of a self-assembling protein nanoparticle presenting a prefusion-stabilized variant of the F glycoprotein trimer (DS-Cav1) in a repetitive array on the nanoparticle exterior. The two-component nature of the nanoparticle scaffold enabled the production of highly ordered, monodisperse immunogens that display DS-Cav1 at controllable density. In mice and nonhuman primates, the full-valency nanoparticle immunogen displaying 20 DS-Cav1 trimers induced neutralizing antibody responses ∼10-fold higher than trimeric DS-Cav1. These results motivate continued development of this promising nanoparticle RSV vaccine candidate and establish computationally designed two-component nanoparticles as a robust and customizable platform for structure-based vaccine design.


Subject(s)
Antibodies, Neutralizing/immunology , Respiratory Syncytial Viruses/immunology , Vaccination/methods , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Caveolin 1 , Cell Line , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Nanoparticles/therapeutic use , Primary Cell Culture , Respiratory Syncytial Viruses/pathogenicity , Vaccines/immunology , Viral Fusion Proteins/immunology , Viral Fusion Proteins/metabolism , Viral Fusion Proteins/physiology
2.
Cell ; 174(5): 1158-1171.e19, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057110

ABSTRACT

Characterizing cell surface receptors mediating viral infection is critical for understanding viral tropism and developing antiviral therapies. Nevertheless, due to challenges associated with detecting protein interactions on the cell surface, the host receptors of many human pathogens remain unknown. Here, we build a library consisting of most single transmembrane human receptors and implement a workflow for unbiased and high-sensitivity detection of receptor-ligand interactions. We apply this technology to elucidate the long-sought receptor of human cytomegalovirus (HCMV), the leading viral cause of congenital birth defects. We identify neuropilin-2 (Nrp2) as the receptor for HCMV-pentamer infection in epithelial/endothelial cells and uncover additional HCMV interactors. Using a combination of biochemistry, cell-based assays, and electron microscopy, we characterize the pentamer-Nrp2 interaction and determine the architecture of the pentamer-Nrp2 complex. This work represents an important approach to the study of host-pathogen interactions and provides a framework for understanding HCMV infection, neutralization, and the development of novel anti-HCMV therapies.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Neuropilin-2/metabolism , Receptors, Virus/metabolism , Antibodies, Neutralizing/chemistry , Cell Membrane/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Epitope Mapping , Female , HEK293 Cells , Humans , Protein Conformation , Viral Envelope Proteins/metabolism , Virus Internalization
3.
Immunity ; 56(10): 2425-2441.e14, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37689061

ABSTRACT

Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.

4.
Immunity ; 54(9): 2005-2023.e10, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525339

ABSTRACT

Cell fate decisions during early B cell activation determine the outcome of responses to pathogens and vaccines. We examined the early B cell response to T-dependent antigen in mice by single-cell RNA sequencing. Early after immunization, a homogeneous population of activated precursors (APs) gave rise to a transient wave of plasmablasts (PBs), followed a day later by the emergence of germinal center B cells (GCBCs). Most APs rapidly exited the cell cycle, giving rise to non-GC-derived early memory B cells (eMBCs) that retained an AP-like transcriptional profile. Rapid decline of antigen availability controlled these events; provision of excess antigen precluded cell cycle exit and induced a new wave of PBs. Fate mapping revealed a prominent contribution of eMBCs to the MBC pool. Quiescent cells with an MBC phenotype dominated the early response to immunization in primates. A reservoir of APs/eMBCs may enable rapid readjustment of the immune response when failure to contain a threat is manifested by increased antigen availability.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Humoral/immunology , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Animals , Antigen Presentation/immunology , Cell Differentiation/immunology , Mice , Plasma Cells/immunology , Precursor Cells, B-Lymphoid/immunology
5.
PLoS Pathog ; 18(7): e1010673, 2022 07.
Article in English | MEDLINE | ID: mdl-35788752

ABSTRACT

The limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein. We subsequently showed that in vitro produced PD-L1high but not PD-L1low HIV virions, significantly reduced Tfh-cell proliferation and IL-21 production, ultimately leading to a decreased of IgG1 secretion from GC B cells. Interestingly, Tfh-cell functions were fully restored in presence of anti-PD-L1/2 blocking mAbs treatment, demonstrating that the incorporated PD-L1 proteins were functionally active. Taken together, the present study unveils an immunovirological mechanism by which HIV specifically exploits the regulatory potential of PD-L1 to suppress the immune system during the course of HIV infection.


Subject(s)
HIV Infections , T-Lymphocytes, Helper-Inducer , B-Lymphocytes , Humans , T Follicular Helper Cells , Virion
6.
BMC Health Serv Res ; 24(1): 663, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796411

ABSTRACT

BACKGROUND: Vaccines play a crucial role in eradicating and containing disease outbreaks. Therefore, understanding the reasons behind vaccine refusal and associated factors is essential for improving vaccine acceptance rates. Our objective was to examine the determinants of COVID-19 vaccine non-uptake and explore the reasons for non-uptake among healthcare workers (HCWs) in Uganda. METHODS: Between July and August 2021, we conducted a cross-sectional study among healthcare workers in primary healthcare facilities (private and government) in Entebbe Municipality, Uganda. Participants were recruited using convenience sampling, and consenting individuals received credentials to access an electronic database and complete a structured questionnaire. There were no established HCWs contact registers in the municipality, and the study was conducted during a national lock down, therefore, the HCWs who were on duty at the time of the study were approached. The survey questions were based on the '3Cs' model of vaccine hesitancy and focused on confidence, convenience, and complacency factors. Non-uptake of vaccines was defined as not having received any of the available vaccines in the country. We employed counts, percentages, and simple logit models to summarize the reasons for non-uptake of COVID-19 vaccines and to identify associated factors. RESULTS: The study recruited 360 HCWs, 61.7% of whom were female, with an average age of 31 years (SD = 7.9). Among them, 124 (34.4%) healthcare workers did not receive any COVID-19 vaccine. Non-uptake of COVID-19 vaccines was independently associated with several factors, including age [35 + years adjusted odds ratio (aOR) = 0.30, 95% CI: 0.13-0.66 compared with 18-24 years], facility ownership [government, aOR = 0.22 (0.10-0.49) compared with private not-for-profit], previous testing for coronavirus [yes, aOR = 0.35 (0.19-0.65)], and previous involvement in COVID-19 vaccine activities [yes, aOR = 0.17 (0.10-0.29)]. The primary reasons cited for non-uptake of COVID-19 vaccines were related to a lack of confidence in the vaccines, such as concerns about side effects (79.8%) and the need for more time to understand the vaccines (89.5%), as well as the importance of weighing benefits and risks (84.7%) before being vaccinated. A smaller proportion, approximately 23%, cited reasons related to complacency and lack of convenience in accessing vaccination services. CONCLUSION: The high proportion of non-uptake of COVID-19 vaccines among this population primarily stems from a lack of confidence and trust in the vaccines, coupled with insufficient time allowed for users to make informed decisions. This underscores the urgent need for ongoing monitoring and trend analysis of vaccine non-uptake to guide the development and implementation of strategies aimed at building and sustaining vaccine confidence. Adequate time should be allowed to explain benefits of vaccination to the population to allay fears that might exist before actual vaccination is rolled out.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Personnel , Humans , Cross-Sectional Studies , Uganda , Female , Male , COVID-19 Vaccines/administration & dosage , Adult , Health Personnel/statistics & numerical data , Health Personnel/psychology , COVID-19/prevention & control , Vaccination Hesitancy/statistics & numerical data , Vaccination Hesitancy/psychology , Middle Aged , Surveys and Questionnaires , SARS-CoV-2
7.
PLoS Pathog ; 16(12): e1009169, 2020 12.
Article in English | MEDLINE | ID: mdl-33370407

ABSTRACT

Human cytomegalovirus (HCMV) is the primary viral cause of congenital birth defects and causes significant morbidity and mortality in immune-suppressed transplant recipients. Despite considerable efforts in vaccine development, HCMV infection still represents an unmet clinical need. In recent phase II trials, a MF59-adjuvanted gB vaccine showed only modest efficacy in preventing infection. These findings might be attributed to low level of antibodies (Abs) with a neutralizing activity induced by this vaccine. Here, we analyzed the immunogenicity of each gB antigenic domain (AD) and demonstrated that domain I of gB (AD5) is the main target of HCMV neutralizing antibodies. Furthermore, we designed, characterized and evaluated immunogenic responses to two different nanoparticles displaying a trimeric AD5 antigen. We showed that mice immunization with nanoparticles induces sera neutralization titers up to 100-fold higher compared to those obtained with the gB extracellular domain (gBECD). Collectively, these results illustrate with a medically relevant example the advantages of using a general approach combining antigen discovery, protein engineering and scaffold presentation for modern development of subunit vaccines against complex pathogens.


Subject(s)
Antibodies, Viral/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/immunology , Nanoparticles , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Cytomegalovirus/immunology , Cytomegalovirus Infections/prevention & control , Female , Humans , Mice , Mice, Inbred BALB C , Vaccines, Subunit/immunology
8.
PLoS Comput Biol ; 16(7): e1007731, 2020 07.
Article in English | MEDLINE | ID: mdl-32649725

ABSTRACT

High-throughput sequencing of human immunoglobulin genes allows analysis of antibody repertoires and the reconstruction of clonal lineage evolution. The study of antibodies (Abs) affinity maturation is of specific interest to understand the generation of Abs with high affinity or broadly neutralizing activities. Moreover, phylogenic analysis enables the identification of the key somatic mutations required to achieve optimal antigen binding. The Immcantation framework provides a start-to-finish set of analytical methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) data. Furthermore, Immcantation's Change-O package has developed IgPhyML, an algorithm designed to build specifically immunoglobulin (Ig) phylogenic trees. Meanwhile Phylip, an algorithm that has been originally developed for applications in ecology and macroevolution, can also be used for the phylogenic reconstruction of antibodies maturation pathway. To complement Ig lineages made by IgPhyML or Dnaml (Phylip), we developed AncesTree, a graphic user interface (GUI) that aims to give researchers the opportunity to interactively explore antibodies clonal evolution. AncesTree displays interactive immunoglobulins phylogenic tree, Ig related mutations and sequence alignments using additional information coming from specialized antibody tools. The GUI is a Java standalone application allowing interaction with Ig tree that can run under Windows, Linux and Mac OS.


Subject(s)
Genes, Immunoglobulin/genetics , High-Throughput Nucleotide Sequencing/methods , Immunoglobulins , Sequence Alignment/methods , Software , Algorithms , Cell Lineage/genetics , Humans , Immunoglobulins/chemistry , Immunoglobulins/classification , Immunoglobulins/genetics , Phylogeny , Sequence Analysis, DNA/methods
9.
Proc Natl Acad Sci U S A ; 114(25): E4924-E4933, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28584133

ABSTRACT

In addition to its canonical role in nuclear transcription, signal transducer and activator of transcription 3 (STAT3) is emerging as an important regulator of mitochondrial function. Here, we demonstrate that a novel inhibitor that binds with high affinity to the STAT3 SH2 domain triggers a complex cascade of events initiated by interference with mitochondrial STAT3 (mSTAT3). The mSTAT3-drug interaction leads to mitochondrial dysfunction, accumulation of proteotoxic STAT3 aggregates, and cell death. The cytotoxic effects depend directly on the drug's ability to interfere with mSTAT3 and mitochondrial function, as demonstrated by site-directed mutagenesis and use of STAT3 knockout and mitochondria-depleted cells. Importantly, the lethal consequences of mSTAT3 inhibition are enhanced by glucose starvation and by increased reliance of cancer cells and tumor-initiating cells on mitochondria, resulting in potent activity in cell cultures and tumor xenografts in mice. These findings can be exploited for eliciting synthetic lethality in metabolically stressed cancer cells using high-affinity STAT3 inhibitors. Thus, this study provides insights on the role of mSTAT3 in cancer cells and a conceptual framework for developing more effective cancer therapies.


Subject(s)
Mitochondria/genetics , Neoplasms/genetics , STAT3 Transcription Factor/genetics , Synthetic Lethal Mutations/genetics , src Homology Domains/genetics , Animals , Cell Death/genetics , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude
10.
Nature ; 501(7467): 439-43, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-23955151

ABSTRACT

Broadly neutralizing antibodies reactive against most and even all variants of the same viral species have been described for influenza and HIV-1 (ref. 1). However, whether a neutralizing antibody could have the breadth of range to target different viral species was unknown. Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are common pathogens that cause severe disease in premature newborns, hospitalized children and immune-compromised patients, and play a role in asthma exacerbations. Although antisera generated against either HRSV or HMPV are not cross-neutralizing, we speculated that, because of the repeated exposure to these viruses, cross-neutralizing antibodies may be selected in some individuals. Here we describe a human monoclonal antibody (MPE8) that potently cross-neutralizes HRSV and HMPV as well as two animal paramyxoviruses: bovine RSV (BRSV) and pneumonia virus of mice (PVM). In its germline configuration, MPE8 is HRSV-specific and its breadth is achieved by somatic mutations in the light chain variable region. MPE8 did not result in the selection of viral escape mutants that evaded antibody targeting and showed potent prophylactic efficacy in animal models of HRSV and HMPV infection, as well as prophylactic and therapeutic efficacy in the more relevant model of lethal PVM infection. The core epitope of MPE8 was mapped on two highly conserved anti-parallel ß-strands on the pre-fusion viral F protein, which are rearranged in the post-fusion F protein conformation. Twenty-six out of the thirty HRSV-specific neutralizing antibodies isolated were also found to be specific for the pre-fusion F protein. Taken together, these results indicate that MPE8 might be used for the prophylaxis and therapy of severe HRSV and HMPV infections and identify the pre-fusion F protein as a candidate HRSV vaccine.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cross Reactions/immunology , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , Paramyxoviridae/classification , Paramyxoviridae/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibody Specificity/immunology , Cattle , Epitopes/immunology , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Metapneumovirus/immunology , Mice , Models, Molecular , Molecular Sequence Data , Murine pneumonia virus/immunology , Paramyxoviridae Infections/prevention & control , Paramyxoviridae Infections/therapy , Pneumovirus Infections/immunology , Pneumovirus Infections/prevention & control , Pneumovirus Infections/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/therapy , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Bovine/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Viral Vaccines/chemistry , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL